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1. Introduction and results. We consider the nonstationary
problems

-t- zl + q(x) u(x, t) f(x)e-- (2> 0), 1

u(x, o)-o, s---u(x, o)-o; 2 )’

-t--/ q(x) u(x, t)-O, 1 )’

u(x, o)- fl- -u(x, 0)- ( 2 )
3t

in 3 Euclidean space R, where q(x) is a real-valued function belonging
to C](R). Furthermore assume that the operator L- A+ q(x) has
no eigenvalue. Here z/ denotes the Laplacian 3/3x+3/x+/3x,
and L is the unique self-adjoint extension in L(R) of z// q defined
on C(R). Then under the conditions imposed on q, L is strictly
positive, and it is known that D(L)-W(R), where W:(R) denotes
the space of functions whose partial derivatives of order<=2 in the
sense of distribution belong to L(R).

Then we have the following
Theorem 1. Suppose that g(x) e C](R), g.(x) e Co(R), and

f(x) e C(RS). Then the following three conditions are equivalent:
) The solution of the problem (1), (2)’ is such that at every

point x e R we have
lira u(x, t)ext-u+(x, 2) (2>0),

where u+(x, 2) denotes lim u(x, 2) and u(x, 2) is the solution of the
+0

equatio
Lu-(2+ie)u+f

ii) The solution of the problem (1)’, (2) is such that at every

point x e R we have
lim u(x, t)-O.

iii) Every solution of the equation (-2+q)u-O, satisfying the

conditions u-O(I x I-), u =0(I x ]-) at infinity is identically zero
3x
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(cf. ).
For the special case where q(x)depends only on Ix[ and satisfies

the inequality

-q(x)<= 1 /2
x ]

we give the relation of the principle of limit amplitude and the
characteristics.

Theorem 2. If there exists a solution u(x) of the equation
(-+q)u=0 which is not identically zero and satisfies the conditions

u-O(I x -) 3u -0(I x [-) at infinity, then there exists a solution

v(x, t) of the problem

v+Lv=O,

v(x, o)- g(x), ---i-v(x, o)- g(x),

such that v(x, t)=u(x) for x lt, where g(x) e C](R), g(x) e C(R).
2. Proof o Theorem 1. From theorem 6 in [1 it follows

that iii) implies i) and ii). To prove the converse assertion in Theorem
1 we use the following Lemmas together with the methords considered
in [1 or

Lemma 2 (Fredholm). Let q(x)=0 for
be the resolvent kernel of the equation

u(x) 1
4 x-y

q(y)u(v)dy+ (x)
in 9, where 9 is a compact set of R
has the form

R(x, , )- w(x)v(y) + + w(x)v(y) + K(x, y,
(-o) (-o)

in a neighbourhood of a pole o of R(x, y,
.., m) are non-trivial solutions of the equation

v(y) q(y)
4 ly-sl

and K(x, y, 2) is continuous in (x, y, 2) for xy, analytic in 2 for
xy, K(x,y,2)=O for ]y>ro and K(x,y,2)=O(]x-y[-) as ]x-yO.

Let E be the resolution of the identity generated by the operator
L. Since E+0-0, we have

Lemma 2. If there exists a solution of (-A+q)w=0 which
W o( x ]-) at infinity,is not identically zero and w=O([ x

then in Lemma 1 we have that 20-0 and m-1.. Proof of Theorem 2. It follows from [4 that u(x) depends



No. 10 Certain Condition for Principle of Limiting Amplitude 1157

only on Ix I. Set w(r)-ru(x), where r-I I. Then we have

d----w(r)-q(r)w(r)=O for r>_0,
dt

where q(r) q(x), q(r) 0 for r> to.
If we set u(r, t)-w(r) in D, where D{(r, t); 0rt}, we see

that u(r, t) satisfies the equation

t r q u(r, t)-O (3)

in D with the condition: u(0, t)- 0.
Next in D[(r, t); Otr} we shall find the solution u(r, t)

of the equation (3) with initial deta: u(r, 0)-(r) .u (r, 0)-(r)

where e C([0, )), supp [0, 2ro, e C([0, )) and supp
(2r0, r), where r>2ro. Furthermore we see that u(r, t) satisfies
the integral equation

u(r, t)- i i{(r+t)+(r- t)}+ _(s)gs

+ -<--q(s)u(s, v)ds 4

1in D. Since supp (2r0, r), we see that g(r, t)_
satisfies (3) in D. Therefore for r> r we can assume that w(r)

2
=u(r, r)-C, where C is a constant and C0.

Now we shall find the solution u(r, t) of (3) in D satisfying
the initial deta with compact supports such that u(r, r)-w(r)-u(r, r)
for r0.

To this end we replace the coordinates r, t by new coordinates

l(r+t), 1 t) In D{(, ); .>0, and, such that - =(r-
0}, we consider

(, )-()- ’ q(+)(, )d, ( a )
r Bywhere ()-w(r)-u(r, r)e C([0, )) and ()-0 for

C(D) we denote the Banach space of all bounded continuous functions
(, ) defined on D, with the norm ]] ]- sup ](, )]. Instead
of (5) we consider the equation

(, )-e-)()-e’-’):d::q(+)e--)(, )d, (6)

where is an arbitrary positive number. Set

(%)(, ) -e-,, g +)e--v(, )g.
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Then T is a continuous linear operator on C(D) to C(D) and we
have

l I:lq(r),dr
Therefore for sufficiently large there exists a unique solution g(, .)
of (6) belonging to C(D). Setting g(, )-e-(-.)(, ), we see
that g(,) is continuous and satisfies (5) in D. Hence (,) e C(D).

Furthermore we have that (, )-0 for $>.r
2

If we set

u(r, t)--g(, ), g,(r)--,(r)+g

from (5) we have

t f’
q (f, t)-O in D,

and furthermore
gl(f)--g2(r)--O for r>r,, gl(r) e C8(0, )), g2(f) e C([O, )).
If we set

u(r, t)-u(r, t)+u(r, t) in D,
then we have that u(r, t) satisfies (3) in D with the initial deta

u(r, 0)-g(r), u(r, O)-g(r) and on the characteristic line {(r, t);

t-r} we have w(r)-u(r, r). Therefore if we set
u(r,t)-w(r) inD,,

=u(r,t) inD,,
then we have that in {(r, t); r0 and t0}, u(r,t) satisfies (3) in

the sense of distribution and u(0, t)-0, u(r, 0)-g(r), u(r, 0)-g(r),

u(r, t) w(r) for r t.
Furthermore we have the following
Lemma . We can take g(r), g(r) such that

g(0) g(0)- 0.
We shall postpone to prove Lemma 3. Setting v(x, t)-r-’u(r, t),

y(x)-r-g(r), y(x)-r-g(r), by virtue of Lemma 3, we have
y(x) e C](R), y(x) e C(R), and

-+q v(, t)-o,
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which is the assertion of Theorem 2.
Proof of Lemma 3. By the construction of gl(r), g.(r), we have
g(0)- w(0)- 0,

g(0)- l- 12w’(0) zlI -lI[q(r)u(r r)dr.(0)+ +-’o q(r)w(r)dr

Set

K= hmv’(0)+ he q(r)w(f)gr.

Then we have g(0)-0 if and only if we have

(7)

Let (r, $) be the solution of (3) in D. with initial deta (r, 0)

--(r), -t(r, 0)-0, where (r)e C(0, oo)) and suppc0, 2r0.

Then we can take (r) such that

’(0)+ oq(r)(r, r)dr:/:O.

In fact, we have

l(r, r)--{(2r)+1(0)} +lodVJ -q(s)(s, ")ds,

by virtue of (4). Since we have

by virtue of the energy inequality, we have

q(r)(r, r)dr <__C’ sup (r)l,

where C’ is a constant depending on q, r0.
If we choose such that

(0) ]> C’ sup (r) [,
O<:2r

we have

(o)+ q()(, )g4=o.

If in (7) we replaee (r, r) by (r, r)+k’g(r, f), then (7) becomes

Iiq(r)u(r, { I }’(0) + r)dr+ k (0)/ q(r)(r, r)dr K, ( 8 )

where k is an arbitrary real number. Taking k such that (8)holds,
we have g.(0)-0 for the g(r) which is obtained by replacing u(r, t)
by u(r, t)+ k(r, t).

Since q(r)-O for r>ro and w(r) is bounded, we see that w(r)
constant for r:>ro, therefore set w(r)- C for r> r0. We also

require that k(r, r)+u(r, r)-C for r:>, that is,
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(0) -{- kVA(O) -{- / q(s){u(s, /

2C for r> r-A. 9 )
2

But in the equality (9) the values of u(s,v)/kg,(s,r) for
(s, v)e{(s, v); 0<_v<_s<_r0} depend only on the values of ?(r), .(r),
(r) for re 0,2r0, and are independent of the values of (r)
for r e(2r0, r). Therefore it is obvious that we can take .(r)
such that (9) holds for r> r. Q.E.D.

2

[4]
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