250. On Certain Condition for the Principle of Limiting Amplitude

By Koji Kubota and Taira Shirota
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1966)

1. Introduction and results. We consider the nonstationary problems

$$
\begin{gather*}
{\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+q(x)\right] u(x, t)=f(x) e^{-i \sqrt{\lambda} t} \quad(\lambda>0),} \tag{1}\\
u(x, 0)=0, \quad \frac{\partial}{\partial t} u(x, 0)=0 ; \tag{2}\\
{\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+q(x)\right] u(x, t)=0} \tag{1}\\
u(x, 0)=g_{1}(x), \quad \frac{\partial}{\partial t} u(x, 0)=g_{2}(x) ; \tag{2}
\end{gather*}
$$

in 3 Euclidean space R^{3}, where $q(x)$ is a real-valued function belonging to $C_{0}^{2}\left(R^{3}\right)$. Furthermore assume that the operator $L=-\Delta+q(x)$ has no eigenvalue. Here Δ denotes the Laplacian $\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\partial^{2} / \partial x_{3}^{2}$, and L is the unique self-adjoint extension in $L^{2}\left(R^{3}\right)$ of $-\Delta+q$ defined on $C_{0}^{\infty}\left(R^{3}\right)$. Then under the conditions imposed on q, L is strictly positive, and it is known that $D(L)=W_{2}^{2}\left(R^{3}\right)$, where $W_{2}^{2}\left(R^{3}\right)$ denotes the space of functions whose partial derivatives of order $\leqq 2$ in the sense of distribution belong to $L^{2}\left(R^{3}\right)$.

Then we have the following
Theorem 1. Suppose that $g_{1}(x) \in C_{0}^{2}\left(R^{3}\right), g_{2}(x) \in C_{0}^{1}\left(R^{3}\right)$, and $f(x) \in C_{0}^{1}\left(R^{3}\right)$. Then the following three conditions are equivalent:
i) The solution of the problem (1), (2)' is such that at every point $x \in R^{3}$ we have

$$
\lim _{t \rightarrow \infty} u(x, t) e^{i \sqrt{\lambda} t}=u_{+}(x, \lambda) \quad(\lambda>0)
$$

where $u_{+}(x, \lambda)$ denotes $\lim _{\varepsilon \rightarrow+0} u_{\varepsilon}(x, \lambda)$ and $u_{\varepsilon}(x, \lambda)$ is the solution of the equation

$$
L u=(\lambda+i \varepsilon) u+f .
$$

ii) The solution of the problem (1)', (2) is such that at every point $x \in R^{3}$ we have

$$
\lim _{t \rightarrow \infty} u(x, t)=0
$$

iii) Every solution of the equation $(-\Delta+q) u=0$, satisfying the conditions $u=O\left(|x|^{-1}\right), \frac{\partial u}{\partial x_{k}}=O\left(|x|^{-2}\right)$ at infinity is identically zero
(cf. [4]).
For the special case where $q(x)$ depends only on $|x|$ and satisfies the inequality

$$
-q(x) \leqq\left(\frac{1}{4}+2\right) \frac{1}{|x|^{2}},
$$

we give the relation of the principle of limit amplitude and the characteristics.

Theorem 2. If there exists a solution $u(x)$ of the equation $(-\Delta+q) u=0$ which is not identically zero and satisfies the conditions $u=O\left(|x|^{-1}\right), \frac{\partial u}{\partial x_{k}}=O\left(|x|^{-2}\right)$ at infinity, then there exists a solution $v(x, t)$ of the problem

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} v+L v=0, \\
& v(x, 0)=g_{1}(x), \quad \frac{\partial}{\partial t} v(x, 0)=g_{2}(x),
\end{aligned}
$$

such that $v(x, t)=u(x)$ for $|x| \leqq t$, where $g_{1}(x) \in C_{0}^{2}\left(R^{3}\right), g_{2}(x) \in C_{0}^{1}\left(R^{3}\right)$.
2. Proof of Theorem 1. From theorem 6 in [1] it follows that iii) implies i) and ii). To prove the converse assertion in Theorem 1 we use the following Lemmas together with the methords considered in [1] or [3].

Lemma 2 (Fredholm). Let $q(x)=0$ for $|x|>r_{0}$ and $R(x, y, \lambda)$ be the resolvent kernel of the equation

$$
u(x)=\int-\frac{1}{4 \pi} \frac{e^{-\lambda|x-y|}}{|x-y|} q(y) u(y) d y+\psi(x)
$$

in Ω, where Ω is a compact set of R^{3}. Then we see that $R(x, y, \lambda)$ has the form

$$
R(x, y, \lambda)=\frac{w(x) v_{m}(y)}{\left(\lambda-\lambda_{0}\right)^{m}}+\cdots+\frac{w(x) v_{1}(y)}{\left(\lambda-\lambda_{0}\right)}+K(x, y, \lambda)
$$

in a neighbourhood of a pole λ_{0} of $R(x, y, \lambda)$, where $v_{j}(y),(j=1,2$, \cdots, m) are non-trivial solutions of the equation

$$
v(y)=-\frac{1}{4 \pi} q(y) \int \frac{1}{|y-s|} v(s) d s \quad \text { in } \Omega,
$$

and $K(x, y, \lambda)$ is continuous in (x, y, λ) for $x \neq y$, analytic in λ for $x \neq y, K(x, y, \lambda)=0$ for $|y|>r_{0}$ and $K(x, y, \lambda)=O\left(|x-y|^{-1}\right)$ as $|x-y| \rightarrow 0$.

Let E_{λ} be the resolution of the identity generated by the operator L. Since $E_{\lambda+0}=0$, we have

Lemma 2. If there exists a solution of $(-\Delta+q) w=0$ which is not identically zero and $w=O\left(|x|^{-1}\right), \frac{\partial w}{\partial x_{k}}=O\left(|x|^{-2}\right)$ at infinity, then in Lemma 1 we have that $\lambda_{0}=0$ and $m=1$.
3. Proof of Theorem 2. It follows from [4] that $u(x)$ depends
only on $|x|$. Set $w(r)=r u(x)$, where $r=|x|$. Then we have

$$
\frac{d^{2}}{d t^{2}} w(r)-q(r) w(r)=0 \quad \text { for } r \geqq 0,
$$

where $q(r)=q(x), q(r)=0$ for $r>r_{0}$.
If we set $u(r, t)=w(r)$ in D_{1}, where $D_{1} \equiv\{(r, t) ; 0 \leqq r \leqq t\}$, we see that $u(r, t)$ satisfies the equation

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial r^{2}}+q\right] u(r, t)=0 \tag{3}
\end{equation*}
$$

in D_{1} with the condition: $u(0, t)=0$.
Next in $D_{2} \equiv\{(r, t) ; 0 \leqq t \leqq r\}$ we shall find the solution $u_{1}(r, t)$ of the equation (3) with initial deta: $u_{1}(r, 0)=\varphi_{1}(r), \frac{\partial u_{1}}{\partial t}(r, 0)=\varphi_{2}(r)$, where $\varphi_{1} \in C^{3}([0, \infty))$, supp $\varphi_{1} \subset\left[0,2 r_{0}\right], \varphi_{2} \in C^{2}([0, \infty))$ and $\operatorname{supp} \varphi_{2} \subset$ ($2 r_{0}, r_{1}$), where $r_{1}>2 r_{0}$. Furthermore we see that $u_{1}(r, t)$ satisfies the integral equation

$$
\begin{align*}
u_{1}(r, t)= & \frac{1}{2}\left\{\varphi_{1}(r+t)+\varphi_{1}(r-t)\right\}+\frac{1}{2} \int_{r-t}^{r+t} \varphi_{2}(s) d s \\
& +\frac{1}{2} \int_{0}^{t} d \tau \int_{r-(t-\tau)}^{r+(t-\tau)}-q(s) u_{1}(s, \tau) d s \tag{4}
\end{align*}
$$

in D_{2}. Since supp $\varphi_{2} \subset\left(2 r_{0}, r_{1}\right)$, we see that $\widetilde{u}_{1}(r, t) \equiv \frac{1}{2} \int_{r-t}^{r+t} \varphi_{2}(s) d s$ satisfies (3) in D_{2}. Therefore for $r>\frac{r_{1}}{2}$ we can assume that $w(r)$ $=u_{1}(r, r)=C$, where C is a constant and $C \neq 0$.

Now we shall find the solution $u_{2}(r, t)$ of (3) in D_{2} satisfying the initial deta with compact supports such that $u_{2}(r, r)=w(r)-u_{1}(r, r)$ for $r \geqq 0$.

To this end we replace the coordinates r, t by new coordinates ξ_{1}, ξ_{2} such that $\xi_{1}=\frac{1}{2}(r+t), \xi_{2}=\frac{1}{2}(r-t)$. In $D_{3} \equiv\left\{\left(\xi_{1}, \xi_{2}\right) ; \xi_{1} \geqq 0\right.$, and $\left.\xi_{2} \geqq 0\right\}$, we consider

$$
\begin{equation*}
\widetilde{u}\left(\xi_{1}, \xi_{2}\right)=\psi\left(\xi_{1}\right)-\int_{0}^{\xi_{2}} d \zeta_{2} \int_{\xi_{1}}^{r_{0}} q\left(\zeta_{1}+\zeta_{2}\right) \tilde{u}\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1}, \tag{5}
\end{equation*}
$$

where $\psi\left(\xi_{1}\right)=w(r)-u_{1}(r, r) \in C^{3}([0, \infty))$ and $\psi\left(\xi_{1}\right)=0$ for $\xi_{1}>\frac{r_{1}}{2}$. By $\bar{C}\left(D_{3}\right)$ we denote the Banach space of all bounded continuous functions $\widetilde{v}\left(\xi_{1}, \xi_{2}\right)$ defined on D_{3}, with the norm $\|\widetilde{v}\|=\sup _{\left\{\mathcal{S}_{1}, \varepsilon_{2} \in \mathcal{D}_{3}\right.}\left|\widetilde{v}\left(\xi_{1}, \xi_{2}\right)\right|$. Instead of (5) we consider the equation

$$
\begin{equation*}
\widetilde{v}\left(\xi_{1}, \xi_{2}\right)=e^{\alpha\left(\xi_{1}-\xi_{2}\right)} \psi\left(\xi_{1}\right)-e^{\alpha\left(\xi_{1}-\xi_{2}\right)} \int_{0}^{\xi_{2}} d \zeta_{2} \int_{\xi_{1}}^{r_{0}} q\left(\zeta_{1}+\zeta_{2}\right) e^{-\alpha\left(\xi_{1}-\zeta_{2}\right)} \tilde{v}\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1}, \tag{6}
\end{equation*}
$$

where α is an arbitrary positive number. Set

$$
\left(T_{\alpha} \widetilde{v}\right)\left(\xi_{1}, \xi_{2}\right)=-e^{\alpha\left(\xi_{1}-\xi_{2}\right)} \int_{0}^{\xi_{2}} d \zeta_{2} \int_{\xi_{1}}^{r_{0}} q\left(\zeta_{1}+\zeta_{2}\right) e^{-\alpha\left(\zeta_{1}-\zeta_{2}\right)} \widetilde{v}\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1} .
$$

Then T_{α} is a continuous linear operator on $\bar{C}\left(D_{3}\right)$ to $\bar{C}\left(D_{3}\right)$ and we have

$$
\left\|T_{\alpha}\right\| \leqq \frac{1}{2 \alpha} \int_{0}^{r_{0}}|q(r)| d r .
$$

Therefore for sufficiently large α there exists a unique solution $\widetilde{v}\left(\xi_{1}, \xi_{2}\right)$ of (6) belonging to $\bar{C}\left(D_{3}\right)$. Setting $\widetilde{u}\left(\xi_{1}, \xi_{2}\right)=e^{-\alpha\left(\xi_{1}-\xi_{2}\right)} \widetilde{v}\left(\xi_{1}, \xi_{2}\right)$, we see that $\tilde{u}\left(\xi_{1}, \xi_{2}\right)$ is continuous and satisfies (5) in D_{3}. Hence $\tilde{u}\left(\xi_{1}, \xi_{2}\right) \in C^{8}\left(D_{3}\right)$. Furthermore we have that $\tilde{u}\left(\xi_{1}, \xi_{2}\right)=0$ for $\xi_{1}>\frac{r_{1}}{2}$.

If we set

$$
\begin{aligned}
u_{2}(r, t) & =\tilde{u}\left(\xi_{1}, \xi_{2}\right), \quad g_{1}(r)=\varphi_{1}(r)+\tilde{u}\left(\frac{r}{2}, \frac{r}{2}\right), \\
g_{2}(r) & =\varphi_{2}(r)+\frac{1}{2}\left\{\frac{\partial}{\partial \xi_{1}} \tilde{u}\left(\frac{r}{2}, \frac{r}{2}\right)-\frac{\partial}{\partial \xi_{2}} \tilde{u}\left(\frac{r}{2}, \frac{r}{2}\right)\right\},
\end{aligned}
$$

from (5) we have

$$
\left[\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial r^{2}}+q\right] u_{2}(r, t)=0 \quad \text { in } D_{2},
$$

$u_{2}(r, r)=w(r)-u_{1}(r, r), u_{2}(r, 0)=g_{1}(r)-\varphi_{1}(r), \frac{\partial}{\partial t} u_{2}(r, 0)=g_{2}(r)-\varphi_{2}(r)$, and furthermore

$$
g_{1}(r)=g_{2}(r)=0 \text { for } r>r_{1}, \quad g_{1}(r) \in C^{3}([0, \infty)), \quad g_{2}(r) \in C^{2}([0, \infty)) .
$$

If we set

$$
u_{3}(r, t)=u_{1}(r, t)+u_{2}(r, t) \quad \text { in } D_{2},
$$

then we have that $u_{3}(r, t)$ satisfies (3) in D_{2} with the initial deta $u_{\mathrm{s}}(r, 0)=g_{1}(r), \frac{\partial}{\partial t} u_{\mathrm{s}}(r, 0)=g_{2}(r)$ and on the characteristic line $\{(r, t)$; $t=r\}$ we have $w(r)=u_{3}(r, r)$. Therefore if we set

$$
\begin{aligned}
u(r, t) & =w(r) \text { in } D_{1}, \\
& =u_{3}(r, t) \text { in } D_{2},
\end{aligned}
$$

then we have that in $\{(r, t) ; r \geqq 0$ and $t \geqq 0\}, u(r, t)$ satisfies (3) in the sense of distribution and $u(0, t)=0, u(r, 0)=g_{1}(r), \frac{\partial}{\partial t} u(r, 0)=g_{2}(r)$, $u(r, t)=w(r)$ for $r \leqq t$.

Furthermore we have the following
Lemma 3. We can take $g_{1}(r), g_{2}(r)$ such that

$$
g_{1}(0)=g_{2}(0)=0 .
$$

We shall postpone to prove Lemma 3. Setting $v(x, t)=r^{-1} u(r, t)$, $\bar{g}_{1}(x)=r^{-1} g_{1}(r), \quad \bar{g}_{2}(x)=r^{-1} g_{2}(r)$, by virtue of Lemma 3, we have $\bar{g}_{1}(x) \in C_{0}^{2}\left(R^{3}\right), \bar{g}_{2}(x) \in C_{0}^{1}\left(R^{3}\right)$, and

$$
\begin{aligned}
& {\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+q\right] v(x, t)=0, } \\
v(x, 0)=\bar{g}_{1}(x), & \frac{\partial}{\partial t} v(x, 0)=\bar{g}_{2}(x), \quad v(x, t)=u(x) \quad \text { for }|x| \leqq t .
\end{aligned}
$$

which is the assertion of Theorem 2.
Proof of Lemma 3. By the construction of $g_{1}(r), g_{2}(r)$, we have $g_{1}(0)=w(0)=0$,
$g_{2}(0)=\frac{1}{2}-\varphi_{2}^{\prime}(0)+\frac{1}{2} w^{\prime}(0)+\frac{1}{2} \int_{0}^{r_{0}} q(r) w(r) d r-\frac{1}{2} \int_{0}^{r_{0}} q(r) u_{1}(r, r) d r$.
Set

$$
K=h u w^{\prime}(0)+h u \int_{0}^{r_{0}} q(r) w(r) d r .
$$

Then we have $g_{2}(0)=0$ if and only if we have

$$
\begin{equation*}
\varphi_{1}^{\prime}(0)+\int_{0}^{r_{0}} q(r) u_{1}(r, r) d r=K \tag{7}
\end{equation*}
$$

Let $\bar{u}_{1}(r, t)$ be the solution of (3) in D_{2} with initial deta $\bar{u}_{1}(r, 0)$ $=\bar{\varphi}_{1}(r), \frac{\partial}{\partial t} \bar{u}_{1}(r, 0)=0$, where $\bar{\varphi}_{1}(r) \in C^{3}([0, \infty))$ and $\operatorname{supp} \bar{\varphi}_{1} \subset\left[0,2 r_{0}\right]$. Then we can take $\bar{\varphi}_{1}(r)$ such that

$$
\bar{\varphi}_{1}^{\prime}(0)+\int_{0}^{r_{0}} q(r) \bar{u}_{1}(r, r) d r \neq 0
$$

In fact, we have

$$
\bar{u}_{1}(r, r)=\frac{1}{2}\left\{\bar{\varphi}_{1}(2 r)+\bar{\varphi}_{1}(0)\right\}+\frac{1}{2} \int_{0}^{r} d \tau \int_{\tau}^{2 r-\tau}-q(s) \bar{u}_{1}(s, \tau) d s,
$$

by virtue of (4). Since we have

$$
\int_{0}^{r_{0}} d \tau\left(\int_{0}^{r_{0}}\left|\bar{u}_{1}(s, \tau)\right|^{2} d s\right)^{\frac{1}{2}} \leqq C\left(\int_{0}^{r_{0}}\left|\bar{\varphi}_{1}(s)\right|^{2} d s\right)^{\frac{1}{2}}
$$

by virtue of the energy inequality, we have

$$
\left|\int_{0}^{r_{0}} q(r) \bar{u}_{1}(r, r) d r\right| \leqq C^{\prime} \sup \left|\bar{\varphi}_{1}(r)\right|,
$$

where C^{\prime} is a constant depending on q, r_{0}.
If we choose $\bar{\varphi}_{1}$ such that

$$
\left|\bar{\varphi}_{1}^{\prime}(0)\right|>C^{\prime} \sup _{0 \leq r \leq 2 r_{0}}\left|\bar{\varphi}_{1}(r)\right|,
$$

we have

$$
\bar{\varphi}_{1}^{\prime}(0)+\int_{0}^{r_{0}} q(r) \bar{u}_{1}(r, r) d r \neq 0
$$

If in (7) we replace $u_{1}(r, r)$ by $u_{1}(r, r)+k \bar{u}_{1}(r, r)$, then (7) becomes

$$
\begin{equation*}
\varphi_{1}^{\prime}(0)+\int_{0}^{r_{0}} q(r) u_{1}(r, r) d r+k\left\{\bar{\varphi}_{1}^{\prime}(0)+\int_{0}^{r_{0}} q(r) \bar{u}_{1}(r, r) d r\right\}=K, \tag{8}
\end{equation*}
$$

where k is an arbitrary real number. Taking k such that (8) holds, we have $g_{2}(0)=0$ for the $g_{\varepsilon}(r)$ which is obtained by replacing $u_{1}(r, t)$ by $u_{1}(r, t)+k \bar{u}_{1}(r, t)$.

Since $q(r)=0$ for $r>r_{0}$ and $w(r)$ is bounded, we see that $w(r)$ $=$ constant for $r>r_{0}$, therefore set $w(r)=C$ for $r>r_{0}$. We also require that $k \bar{u}_{1}(r, r)+u_{1}(r, r)=C$ for $r>\frac{r_{1}}{2}$, that is,

$$
\begin{align*}
& \varphi_{1}(0)+k \bar{\varphi}_{1}(0)+\int_{0}^{r_{1}} \varphi_{2}(s) d s+\int_{0}^{r_{0}} d \tau \int_{\tau}^{r_{0}}-q(s)\left\{u_{1}(s, \tau)+k \bar{u}_{1}(s, \tau)\right\} d s \\
&=2 C \quad \text { for } r>\frac{r_{1}}{2} \tag{9}
\end{align*}
$$

But in the equality (9) the values of $u_{1}(s, \tau)+k \bar{u}_{1}(s, \tau)$ for $(s, \tau) \in\left\{(s, \tau) ; 0 \leq \tau \leq s \leq r_{0}\right\}$ depend only on the values of $\varphi_{1}(r), \varphi_{2}(r)$, $\bar{\varphi}_{1}(r)$ for $r \in\left[0,2 r_{0}\right]$, and are independent of the values of $\varphi_{2}(r)$ for $r \in\left(2 r_{0}, r_{1}\right)$. Therefore it is obvious that we can take $\varphi_{2}(r)$ such that (9) holds for $r>\frac{r_{1}}{2}$.
Q.E.D.

References

[1] D. M. Eìdus: The principle of limiting absorption. Mat. Sb., 57 (99), 13-44 (1962); A.M.S. Transl. series 2 (47), 157-191 (1965).
[2] T. Ikebe: Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rat. Mech. Anal., 5, 1-34 (1960).
[3] O. A. Ladyzhenskaya: On the asymptotic amplitude principle. Uspehi Mat. Nauk (N.S.), 12, 161-164 (1957).
[4] K. Asano and T. Shirota: Remarks on eigenfunctions of the operators $-\Delta+q$. Proc. Japan Acad., 42 (1966).

