246. A Note on Multipliers of Ideals in Function Algebras

By Junzo Wada
Waseda University, Tokyo
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1966)

Let X be a compact Hausdorff space and let $C(X)$ be the algebra of all complex-valued continuous functions on X. By a function algebra we mean a closed (by supremum norm) subalgebra in $C(X)$ containing constants and separating points of X. Recently J. Wells [7] has obtained interesting theorems on multipliers of ideals in function algebras. And especially in the disc algebra A_{1} it was shown that for any non-zero closed ideal J in A, $\mathfrak{M l}$, (J) is the set of all H^{∞}-functions continuous on $D \sim F$, where D is the closed unit disc on the complex plane and F is the intersection of the zeros of the functions in J on the unit circle C ([7], Theorem 8). As A_{1} is an essential maximal algebra, the question naturally arises: Does a similar theorem hold for arbitrary essential maximal algebra? The main purpose of this note is to answer the question under certain conditions and to give a generalization of the theorem mentioned above (cf. Theorem 2).

1. Let A be a function algebra on a compact Hausdorff space X. Let J be a non-zero closed ideal in A. By a multiplier of J we mean a function φ on $X \sim h(J)$ such that $\varphi J \subset J$, where $h(J)$, the hull of J, is the set of points at which every function in J vanishes. Every multiplier of J is a bounded continuous function on the locally compact space $X \sim h(J)$. We denote the set of all multipliers of J by $\mathfrak{M}(J) . \quad M(X)$ denotes the set of all complex, finite, regular Borel measures μ on X and a $\mu(\in M(X))$ is orthogonal to $A(\mu \perp A)$ means $\int f d \mu=0$ for any $f \in A$. For μ in $M(X), \mu_{F}$ denotes the restriction of μ to $F . C(Y)_{\beta}$ denotes the space of bounded continuous functions on the locally compact space Y under the strict topology β of Buck ([3], [7]). Let A be a function algebra on X and let F be a closed subset of X. Then F is said to have the condition (P) if $\mu_{F} \perp A$ for every $\mu \perp A$. If F has (P), it is an intersection of peak sets ([4]). Wells [7] has proved the following theorem: $\mathfrak{M c}(k F)$ is the closure of $k F$ in $C(X \sim F)_{\beta}$ if and only if F has (P), where $k F=\{f \in A: f(F)=0\}$. Let $F_{0}=h(J)$, then $\mathfrak{M}\left(k F_{0}, J\right)$ denotes the set of all functions φ on $X \sim F_{0}$ such that $\varphi \cdot k F_{0} \subset J$. Every function in $\mathfrak{M}\left(k F_{0}, J\right)$ is a bounded continuous
function on $X \sim F_{0}$.
Theorem 1. Let J be a non-zero closed ideal in a function algebra on X and let $F_{0}=h(J)$. If F_{0} has (P), then $\mathfrak{M}\left(k F_{0}, J\right)$ is the closure of J in $C\left(X \sim F_{0}\right)_{\beta}$.

Proof. Since F_{0} has $(P), F_{0}$ is an intersection of peak sets, so we can set $F_{0}=\bigcap_{j} F_{j}, F_{j}=\left\{x: g_{j}(x)=1\right\}$, where every g_{j} is a function in A such that $\left|g_{j}(x)\right|<1$ if $x \notin F_{j}$. If we put

$$
h_{j_{1}, j_{2}}, \cdots, j_{m}, n=1-\left(g_{j_{1}} g_{j_{2}} \cdots g_{j_{m}}\right)^{n},
$$

then these functions are contained in $k\left(F_{0}\right)$. We can here prove that $h_{j_{1}, j_{2}, \ldots, j_{m}, n}$ converges to 1 under the topology β, where the ordering $>$ of the directed set $\left\{\left(j_{1}, j_{2}, \cdots, j_{m}, n\right)\right\}$ is the following; $\left(j_{p_{1}}, j_{p_{2}}, \cdots, j_{p_{s}}, n\right)>\left(j_{q_{1}}, j_{q_{2}}, \cdots, j_{q_{t}}, n^{\prime}\right)$ if the finite set $j_{p_{1}}, j_{p_{2}}, \cdots, j_{p_{s}}$ $\supset j_{q_{1}}, j_{q_{2}}, \cdots, j_{q_{t}}$ and $n \geqq n^{\prime}$. For, let f be a continuous function on $X \sim F_{0}$ which vanishes at infinity. Then if we put $f(x)=0$ for any $x \in F_{0}, f$ can be regarded a continuous function on X. We set $U_{0}=\{x \in X:|f(x)|<\varepsilon\}$. Since $\bigcap_{j} F_{j}=F_{0} \subset U_{0}, F_{j_{1}} \cap F_{j_{2}} \cap \cdots \cap F_{j_{m}} \subset U_{0}$ for some $j_{1}, j_{2}, \cdots, j_{m}$ and

$$
\sup \left\{\left|\left(g_{j_{1}} g_{j_{2}} \cdots g_{j_{m}}\right)(x)\right| ; x \in X \sim U_{0}\right\}<1
$$

Therefore $\left\|\left(g_{j_{1}} g_{j_{2}} \cdots g_{j_{m}}\right)^{n} f\right\|_{\infty}<\varepsilon$ for any $n>$ some n_{0}. This shows that $\left\|\left(1-h_{j_{1}, j_{2}, \cdots, j_{m}, n}\right) f\right\|_{\infty} \rightarrow 0$. Now let φ be any function in $\mathfrak{M}\left(k F_{0}, J\right)$, then $\varphi h_{j_{1}, j_{2}, \ldots, j_{m}, n} \in J$ and $\varphi h_{j_{1}, j_{2}, \cdots j_{m}, n}$ converges to φ under the topology β, so $\mathfrak{M}\left(k F_{0}, J\right)$ is contained in the closure \bar{J}^{β} of J under β. Conversely, it is obvious that $\mathfrak{M}\left(k F_{0}, J\right) \supset \bar{J}^{\beta}$.

Remark. As we see in the proof of Theorem 1, for any $\varphi \in \mathfrak{M}\left(k F_{0}, J\right) \varphi h_{j_{1}, j_{2}, \ldots, j_{m}, n}$ converges to φ under β. We see here that $\left\|\varphi h_{j_{1}, j_{2}, \ldots, j_{m}, n}\right\|_{\infty} \leqq\|\varphi\|_{\infty}\left\|h_{j_{1}, j_{2}, \ldots, j_{m}, n}\right\|_{\infty} \leqq 2\|\varphi\|_{\infty}$.
2. Let A be a function algebra on X and let $S(A)$ be the maximal ideal space of A. Let J be a non-zero closed ideal in A. Since A can be regarded as a function algebra on $S(A)$, we denote the function algebra by $\hat{A}: \hat{A}=\{\hat{f}: f \in A\}$ and $\hat{f}(m)=m(f)$ for any $m \in S(A)$, in other words, for any non-zero homomorphism m on A. $\widehat{J}=\{\widehat{f}: f \in J\}$ is a closed ideal in \hat{A} and $\mathfrak{M}(\hat{J})$ can be defined as a subalgebra of $C\left(S(A) \sim \hat{F}_{0}\right)$, where $\hat{F}_{0}=h(\hat{J})$. We shall use the symbol $\mathfrak{M}(J)$ in the place of $\mathfrak{M}(\hat{J})$. $H_{F_{0}}^{\infty}$ is the set of all bounded continuous functions u on $S(A) \sim F_{0}$ having the following condition; there is a net $\left\{\hat{u}_{\lambda}\right\}$ in \hat{A} which is uniformly bounded ($\left\|\hat{u}_{\lambda}\right\|_{\infty} \leqq$ some M), and \hat{u}_{λ} converges uniformly to u on every compact subset in $S(A) \sim F_{0}$.

Let A_{1} be the disc algebra, that is, the algebra of all continuous functions on $C=\{z:|z|=1\}$ with continuous extensions to $D=\{z:|z| \leqq 1\}$, analytic in the interior of D. Wells [7] has proved the following theorem: Let J be a non-zero closed ideal in A_{1} and let F be the
intersection of zeros of the functions in J on C. Then $\mathfrak{M}(J)$ is the set of all H° functions continuous on $D \sim F$. We see here that F has (P) since F has Lebesgue measure zero, and $h(\hat{J})$ is non dense in D (cf. [5]). Moreover, we easily see that in the disc algebra $A_{1} H_{F}^{\infty}$ is equal to the set of all H^{∞} functions continuous on $D \sim F$.

Following theorem is a generalization of the theorem mentioned above.

Theorem 2. Let A be an essential maximal algebra and let J be a non-zero closed ideal in A. If $F_{0}=h(J)$ has (P) (cf. §1) and if $\hat{F}_{0}=h(\hat{J})$ is non dense in $S(A)$, then $\mathfrak{M}(J)=\mathfrak{M}\left(k F_{0}\right)=H_{F_{0}}^{\infty}$.

Although any function φ is $\mathfrak{M}(J)$ is a continuous function on $S(A) \sim \hat{F}_{0}$, it can be extended continuously to a unique function in $C\left(S(A) \sim F_{0}\right)$. By a function φ in $\mathfrak{M l}(J)$ in the above theorem, we mean the extended function of φ. Suppose that φ is a function in $\mathfrak{M}(J)$. To show that φ can be extended continuously to a function in $C\left(S(A) \sim F_{0}\right)$, we put $F_{0}=\cap F_{\alpha}$, where $F_{\alpha}=\left\{x: g_{\alpha}(x)=1\right\}, g_{\alpha}$ is a function in A and $\left|g_{\alpha}(x)\right|<1$ if $x \notin F_{\alpha}$. If $h_{\alpha}=1-g_{\alpha}, h_{\alpha}\left(F_{\alpha}\right)=0$, and $h_{\alpha}(x) \neq 0$ for $x \in X \sim F_{\alpha}$. If ψ is the restriction of φ to $X, \psi \in \mathfrak{M}(J)$ and ψh_{α} is a continuous function on X. Since $\psi h_{\alpha} J \subset \psi J \subset J$, by Wells ([7], Theorem 7), $\psi h_{\alpha} \in A$. On the other hand, for any \hat{f} in $\hat{J}, \varphi \hat{f} \hat{h}_{\alpha}=\hat{g} \in \hat{J}$. If we set $h_{\alpha} \psi=p_{\alpha}$, then $f p_{\alpha}=g$, $\widehat{\hat{p}} \hat{f}_{\alpha}=\hat{g}$, and $\varphi \hat{f} \hat{h}_{\alpha}$ $=\hat{f} \hat{p}_{\alpha}$. Since $\hat{f}(\in \hat{A})$ is arbitrary, $\varphi \hat{h}_{\alpha}=\hat{p}_{\alpha}$ on $S(A) \sim \hat{F}_{0}$. Since \hat{h}_{α} never vanishes on $S(A) \sim F_{\alpha}$ (cf. [2]), $\rho_{\alpha}(x)=\hat{p}_{\alpha}(x) \mid \hat{h}_{\alpha}(x)$ is continuous on $S(A) \sim F_{\alpha}$. Since $S(A) \sim \hat{F}_{0}$ is dense in $S(A) \sim F_{\alpha}$ and φ is equal to ρ_{α} on $S(A) \sim\left(\widehat{F}_{0} \cup F_{\alpha}\right)$ for any α, φ can be extended to a function in $C\left(S(A) \sim F_{0}\right)$.

We first prove the following lemmas.
Lemma 1. If $F_{0}=h(J)$ has (P), then $\mathfrak{M}(J) \supset \mathfrak{M}\left(k F_{0}\right)$.
Proof. If $\varphi \in \mathfrak{M}\left(k F_{0}\right)$, then $\varphi \cdot \hat{k} \vec{F}_{0} \subset \hat{k} \vec{F}_{0}$, where $k \hat{F}_{0}=\left\{\hat{f}: f \in k F_{0}\right\}$. For any $\hat{f} \in \hat{J}$, we have $\varphi \hat{f} \cdot \hat{k F_{0}} \subset \hat{f} \cdot \hat{k F_{0}} \subset \hat{J}$. Since F_{0} has (P), there is a net $\left\{u_{j}\right\}$ in $k F_{0}$ such that u_{j} converges to 1 under the topology β, so $u_{j} f$ converges to f uniformly. Since $\hat{u}_{j} \hat{f}$ converges to \hat{f} uniformly and $\widehat{u}_{j} \in k \widehat{F}_{0}, \varphi \hat{f} \in \hat{J}$ and $\varphi \hat{J} \subset \hat{J}$.

Lemma 2. If A is an essential maximal algebra and if \hat{F}_{0} $=h(\hat{J})$ is non dense in $S(A), \mathfrak{M}(J) \subset \mathfrak{M}\left(k F_{0}\right)$.

Proof. If $\varphi \in \mathfrak{M}(J), \varphi \hat{J} \subset \hat{J}$. For any $\hat{\alpha} \in k \hat{F}_{0}, \varphi \hat{\alpha}$ is continuous on $S(A)$ and $\varphi \hat{\alpha} \hat{J} \subset \hat{\alpha} \hat{J} \subset \hat{J}$, so $\varphi \hat{\alpha} \in \mathfrak{M}(J)$. By the following lemma, $\varphi \hat{\alpha} \in \hat{A}$, and since $\varphi \hat{\alpha}\left(F_{0}\right)=0, \varphi \hat{\alpha} \in \hat{k} F_{0}$. This shows that $\varphi \in \mathfrak{M}\left(k F_{0}\right)$.

We shall prove the following lemma, which is similar to a theorem of Wells ([7], Theorem 7).

Lemma 3. If $\hat{\hat{F}_{0}}=h(\hat{J})$ is non dense in $S(A)$ and if A is an essential maximal algebra, then any function φ in $\mathfrak{M}(J)$ which
can be extended continuously to a function in $C(S(A))$ is in \widehat{A}.
Proof. We set $B=\left\{f \in C(S(A))\right.$: the restriction of f to $S(A) \sim \hat{F}_{0}$ is in $\mathfrak{M z}(J)\}$. Then we easily see that B is a closed subalgebra in $C(S(A))$ and $B \supset \hat{A}$. To prove that the Šilov boundary ∂_{B} of B is equal to $\partial_{A}(=X)$, it suffices to show that the Choquet boundary M_{B} of B is contained in $\partial_{A}\left([6]\right.$, p. 40). If $x_{0} \in M_{B}$, then for any neighborhood $V\left(x_{0}\right)$ of x_{0} in $S(A)$ there is a function $f_{0} \in B$ such that $\left|f_{0}\left(x_{0}\right)\right|>1$ and $\left|f_{0}(x)\right| \leqq$ some $\eta<1$ for any $x \in S(A) \sim V\left(x_{0}\right)$. Take a neighborhood $W\left(x_{0}\right)$ of x_{0} in $S(A)$ such that $V\left(x_{0}\right) \supset W\left(x_{0}\right)$ and $\left|f_{0}(x)\right|>1$ for any $x \in W\left(x_{0}\right)$, then there is a point $x^{\prime} \in W\left(x_{0}\right) \sim \hat{F}_{0}$, since \hat{F}_{0} is non dense in $S(A)$. Since $\hat{F}_{0} \nRightarrow x^{\prime}$ there is a function $\hat{g} \in \hat{J}$ such that $\hat{g}\left(x^{\prime}\right) \neq 0$, and we can here assume that $\hat{g}\left(x^{\prime}\right)=1$. If we set $\hat{h}=\hat{g} f_{0}^{n}$, then $\hat{h} \in \hat{J}$ and for a sufficiently large $n,\left|\hat{h}\left(x^{\prime}\right)\right|>1$ and $|\hat{h}(y)| \leqq$ some $\eta^{\prime}<1$ for any y in $S(A) \sim V\left(x_{0}\right)$, so $x_{0} \in \partial_{\Delta}$. Now if B_{1} is the restriction of B to $X, A \subset B_{1} \subset C(X)$. Since A is maximal, it follows that $A=B_{1}$ or $B_{1}=C(X)$. If $A=B_{1}$, we obviously see that $B=\hat{A}$ since $\partial_{A}=\partial_{B}=X$. In this case, any $f \in C(S(A))$ whose restriction to $S(A) \sim \hat{F}_{0}$ is in $\mathfrak{M}(J)$ is a function of \hat{A}. Next we shall show that B_{1} is not equal to $C(X)$. Assume the contrary and let \hat{f}_{0} be a non-zero fixed function in \hat{J}, then $Z\left(\hat{f}_{0}\right) \not \supset X$, where $Z\left(\hat{f}_{0}\right)=\left\{x \in S(A), \hat{f}_{0}(x)=0\right\}$. We take an open set U in X such that $Z\left(\hat{f}_{0}\right) \cap X \subset U \subset \bar{U} \subsetneq X$, where \bar{U} is the closure of U in X. We shall prove here that any function $f \in C(X)$ such that $f(\bar{U})=0$ is in A. If this were proved, A would be not an essential algebra ([1]). This contradiction shows that B_{1} is not equal to $C(X)$. Let f be a function in $C(X)$ such that $f(\bar{U})=0$. Since f_{0} never vanishes on $X \sim U, f_{0}^{-1}$ can be extended continuously to a function h of $C(X)$. If we put $\varphi=f h$, then $\varphi \in C(X)$ and $\varphi f_{0}=f$. Since $B_{1}=C(X), \varphi=b$ on X for some $b \in B$, and $b \hat{f}_{0} \in b \hat{J} \subset \hat{J} \subset \hat{A}$ and $f=f_{0} \varphi \in A$.

The proof of Theorem 2. By Lemmas 1 and 2, it remains only to prove that $\mathfrak{M}\left(k F_{0}\right)=H_{F_{0}}^{\infty}$. Since F_{0} has $(P), F_{0}$ is an intersection of peak sets in X. Since A is an essential maximal algebra, by Bear [2], F_{0} is an intersection of peak sets in $S(A)$. By the remark of Theorem 1, for any u in $\mathfrak{M}\left(k F_{0}\right)$, there is a net $\left\{\hat{u}_{k}\right\} \subset \widehat{k F_{0}}$ such that $\left\|\hat{u}_{k}\right\| \leqq 2\|u\|$ and for any $\hat{f} \in \hat{k} \hat{F}_{0} \widehat{u}_{k} \hat{f}$ converges uniformly to $u \hat{f}$ on $S(A)$, so it is clear that $\mathfrak{M}\left(k F_{0}\right) \subset H_{F_{0}}^{\infty}$. Conversely, let u be a function in $H_{F_{0}}^{\infty}$, then there is a net $\left\{\hat{u}_{j}\right\} \subset \hat{A}$ such that $\left\|\hat{u}_{j}\right\|$ \leqq some M and \hat{u}_{j} converges uniformly to u on every compact subset in $S(A) \sim F_{0}$. Since there is a net $\left\{\hat{\varphi}_{k}\right\} \subset k \widehat{F}_{0}$ such that $\left\|\hat{\varphi}_{k}\right\| \leqq 2$ and $\hat{\varphi}_{k}$ converges to 1 under β, we obviously see that the net $\left\{\hat{u}_{j} \hat{\varphi}_{k}\right\} \subset \hat{k} F_{0}$ converges to u under the topology β on $S(A) \sim F_{0}$. This shows that
$H_{F_{0}}^{\infty} \subset \mathfrak{M}\left(k F_{0}\right)$.
Remark. In Theorem 2, if we assume " \hat{A} is an analytic algebra" in the place of " \widehat{F}_{0} is non dense", the conclusion still holds.

References

[1] H. S. Bear: Complex function algebras. Trans. Amer. Math. Soc., 90, 383393 (1959).
[2] -: A strong maximum modulus theorem for maximal function algebras. Trans. Amer. Math. Soc., 92, 465-469 (1959).
[3] R. C. Buck: Bounded continuous functions on a locally compact space. Michigan Math. J., 5, 95-104 (1958).
[4] I. Glicksberg: Mesures orthogonal to algebras and sets of antisymmetry. Trans. Amer. Math. Soc., 105, 415-435 (1962).
[5] K. Hoffman: Banach Spaces of Analytic Functions. Englewood Cliffs., N. J. (1962).
[6] R. R. Phelps: Lectures on Choquet's Theorem. Van Nostrand, N. J. (1965).
[7] J. Wells: Multipliers of ideals in function algebras. Duke Math. J., 31, 703-709 (1964).

