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Let X be a compact Hausdorff space and let C(X) be the
algebra of all complex-valued continuous functions on X. By a
function algebra we mean a closed (by supremum norm) subalgebra
in C(X) containing constants and separating points of X. Recently
J. Wells [_7 has obtained interesting theorems on multipliers of
ideals in function algebras. And especially in the disc algebra A
it was shown that for any non-zero closed ideal J in A, !Y, (J) is
the set of all H-functions continuous on D.-F, where D is the
closed unit disc on the complex plane and F is the intersection of the
zeros of the functions in J on the unit circle C ([7, Theorem 8).
As A is an essential maximal algebra, the question naturally arises:
Does a similar theorem hold for arbitrary essential maximal algebra?
The main purpose of this note is to answer the question under
certain conditions and to give a generalization of the theorem men-
tioned above (cf. Theorem 2).

1. Let A be a function algebra on a compact Hausdorff space
X. Let J be a non-zero closed ideal in A. By a multiplier of J
we mean a function on X..h(J) such that JJ, where h(J),
the hull of J, is the set of points at which every function in J
vanishes. Every multiplier of J is a bounded continuous function
on the locally compact space X..h(J). We denote the set of all
multipliers of J by !Y/_(J). M(X) denotes the set of all complex,
finite, regular Borel measures / on X and a/( e M(X))is orthogonal
to A (/+/-A) means Ifd[-O for any feA. For / in M(X),
denotes the restriction of / to F. C(Y) denotes the space of
bounded continuous functions on the locally compact space Y under
the strict topology f of Buck ([3, _7). Let A be a function
algebra on X and let F be a closed subset of X. Then F is said
to have the condition (P) if /_A for every / _A. If F has (P),
it is an intersection of peak sets ([4). Wells 7 has proved the
following theorem: (t(kF) is the closure of kF in C(XF)a if and
only if F has (P), where kF {feA:f(F)=0}. Let Fo=h(J),
then !gt(kF0, J)denotes the set of all functions ? on X..Fo such
that ?.kFocJ. Every function in !Y(kFo, J) is a bounded continuous
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function on XFo.
Theorem 1. Let J be a non-zero closed ideal in a function

algebra on X and let Fo-h(J). If Fo has (P), then (kFo, J) is
the closure of J in C(X..Fo)a.

Proof. Since F0 has (P), F0 is an intersection of peak sets, so
we can set Fo- F, F-{x: g.(x)-l}, where every g. is a function

in A such that Ig(x)I1 if xe F. If we put

h’l,j2,...,j,--1-(g.lg2’’’ g.)
then these functions are contained in /(F0). We can here prove
that h.,..,...,., converges to 1 under the topology /3, where the
ordering > of the directed set {(j,j, ...,j, n)} is the following;
(j, j., ..., j, n) >(jq, jq, ..., j, n’) if the finite set j, j., ...,
ja, ja, ..., j, and n>__n’. For, let f be a continuous function on
X..Fo which vanishes at infinity. Then if we put f(x)-O for any
x eFo, f can be regarded a continuous function on X. We set
U0- {x e X: If(x) [< e}. Since F.- F0 U0, F. F. F. U0
for some j, j, ..., j and

sup {[ (gg... g)(x)[; x e XN U0} <1.
Therefore [[ (gg.... g)fll<e for any n> some no. This shows
that [I (1-h,. ,.,)f []-0. Now let be any function in gt(kF0, J),
then Fh.,. .,. e J and h., ., converges to under the topology, so (kF0, J) is contained in the closure J of J under /. Con-
versely, it is obvious that r(kF0, J)J.

Remark. As we see in the proof of Theorem 1, for any
e (kF0, J) h.,.. ., converges to under/9. We see here that

2. Let A be a function algebra on X and let S(A) be the
maximal ideal space of A. Let J be a non-zero closed ideal in A.
Since A can be regarded as a function algebra on S(A), we denote
he function algebra by fi: fi.-{]: f e A} and ](m)-m(f) for any
m e S(A), in other words, for any non-zero homomorphism m on A.
]-{]’f e J} is a closed ideal in fi and rt(]) can be defined as a
subalgebra of C(S(A)o), where 90-h(]). We shall use the
symbol Y(J) in the place of F(]). HF0 is the set of all bounded
continuous functions u on S(A)..Fo having the following condition;
there is a net {x} in fi which is uniformly bounded (ll x I]=<some
M), and x converges uniformly to u on every compact subset in
S(A)..Fo.

Let A be the disc algebra, that is, the algebra of all continuous
functions on C-{z: Iz]-l} with continuous extensions to D-{z" [zl=<l},
analytic in the interior of D. Wells [7 has proved the following
theorem: Let J be a non-zero closed ideal in A and let F be the
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intersection of zeros of the functions in J on C. Then F(J) is the
set of all H functions continuous on D.-F. We see here that F
has (P) since F has Lebesgue measure zero, and h(]) is non dense
in D (cf. 5). Moreover, we easily see that in the disc algebra
A H is equal to the set of all H functions continuous on D..F.

Following theorem is a generalization of the theorem mentioned
above.

Theorem 2. Let A be an essential maximal algebra and let J
be a non-zero closed ideal in A. If Fo=h(J) has (P) (cf. 1) and
if Fo-h(J) is non dense in S(A), then 92(J)-(kFo)-Ho.

Although any function is :(J) is a continuous function on
S(A).Fo, it can be extended continuously to a unique function in
C(S(A)..Fo). By a function in (J) in the above theorem, we
mean the extended function of . Suppose that is a function in
/(J). To show that can be extended continuously to a function
in C(S(A) F0), we put F0= V] F, where F {x: g(x)= 1}, g is a

function in A and !g(x)]<l if x e F. If h-l-g, h(F)-O, and
h(x)O for x e X..F. If is the restriction of to X, e ___(J)
and h is a continuous function on X. Since /hJJJ, by
Wells ([7], Theorem 7), h e A. On the other hand, for any f in
J, fh-0 e J. If we set h-p, then fp g,f-, and ]
=3. Since j( e ) is arbitrary, f- on S(A)..o. Since never
vanishes on S(A).-F (cf. [2]), p(x)- (x)/f(x) is continuous on
S(A)..F. Since S(A)Fo is dense in S(A)..F and is equal to
p on S(A).(Fo F) for any c, can be extended to a function in
C(S(A)..Fo).

We first prove the following lemmas.
Lemma 1. If Fo h(J) has (P), then (J) 2(kFo).
Proof. If e (kF0), then F. kFo/F0, where kFo- {]" f e kFo}.

For any f^ e J,^ we have 9.kFo]." "kFo ]. Since F0 has (P), there
is a net {u} in kFo such that u converges to 1 under the topology, so uf converges to f uniformly. Since .3 converges to ]
uniformly and . e k0, j e and 30

Lemma 2. If A is an essential maximal algebra and if Fo
=h(J) is non dense in S(A), 92(J)(kFo).

Proof. If e (J), JJ. For any c e kFo, c is continuous
on S(A) and 3"3"J*, so e f(J). By the following lemma,
a e A, and since (F0)-0, e kFo. This shows that e Tt(kFo).

We shall prove the following lemma, which is similar to a
theorem of Wells (7, Theorem 7).

Lemma :3. If o-h(]) is non dense in S(A) and if A is an
essential maximal algebra, then any function in Tit(J)which
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can be extended continuously to a function in C(S(A)) is in A.
Proof. We set B= {f e C(S(A))" the restriction of f to S(A)..o

is in t(J)}. Then we easily see that B is a closed subalgebra in

C(S(A)) and BA. To prove that the Silov boundary 3 of B is
equal to 3(-X), it suffices to show that the Choquet boundary M
of B is contained in ([6, p. 40). If x0 e M, then for any neigh-
borhood V(xo)of x0 in S(A) there is a function f0 e B such that
fo(Xo) I 1 and fo(X) [_-< some z] 1 for any x e S(A) V(xo). Take
a neighborhood W(xo) of x0 in S(A) such that V(xo) W(xo) and
If0(x) l>l for any x e W(x0), then there is a point x’e W(xo),-Fo,
since F0 is non dense in S(A). Since F0x’ there is a function
e J such that O(x’)=/:0, and we can here assume that O(x’)-l. If

we set h-Of$, then h e J and for a sufficiently large n, Ih(x’)I> 1
and I(y)I=< some 7’<1 for any y in S(A) V(xo), so x0 e . Now
if B is the restriction of B to X, AcBcC(X). Since A is
maximal, it follows that A-B or B-C(X). If A-B, we
obviously see that B-A since $-3-X. In this case, any

f e C(S(A)) whose restriction to S(A)Fo is in (J)is a function
of A. Next we shall show that B is not equal to C(X). Assume
the contrary and let 0 be a non-zero fixed function in , then
Z(fo) 7 X, where Z(]0)- {x e S(A), o(X)-0}. We take an open set
U in X such that Z(0) Xc Uc OX, where is the closure of
U in X. We shall prove here that any function f e C(X) such that
f(U)-O is in A. If this were proved, A would be not an essential
algebra ([1]). This contradiction shows that B is not equal to
C(X). Let f be a function in C(X)such that f(U)-O. Since f0
never vanishes on X..U, f can be extended continuously to a
function h of C(X). If we put 9=fh, then 9eC(X) and fo=f.
Since B-C(X), -b on X for some b e B, and b.o e b,]ccfi_ and
f=foeA.

The proof of Theorem 2. By Lemmas i and 2, it remains
only to prove that Y(kFo)-Ho. Since F0 has (P), F0 is an intersec-
tion of peak sets in X. Since A is an essential maximal algebra,
by Bear [2, F0 is an intersection of peak sets in S(A). By the
remark of Theorem 1, for any u in /rt(kF0), there is a net {}kF0
such that [[ ]1-<- 2 [[ u II and for any ] e k0] converges uniformly
to u on S(A), so it is clear that (kFo)H;o. Conversely, let u
be a function in HF0, then there is a net {.}cA such that [I II
__<some M and . converges uniformly to u on every compact subset
in S(A)Fo. Since there is a net {}ckF0 such that I1 I[<--2 and

converges to 1 under /, we obviously see that the net {}ckF0
converges to u under the topology / on S(A)Fo. This shows that
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Remark. In
algebra" in the
holds.

Theorem 2, if we assume "A is an analytic
place of "F0 is non dense", the conclusion still
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