246. A Note on Multipliers of Ideals in Function Algebras

By Junzo WADA

Waseda University, Tokyo

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1966)

Let X be a compact Hausdorff space and let C(X) be the algebra of all complex-valued continuous functions on X. By a function algebra we mean a closed (by supremum norm) subalgebra in C(X) containing constants and separating points of X. Recently J. Wells [7] has obtained interesting theorems on multipliers of ideals in function algebras. And especially in the disc algebra A_1 it was shown that for any non-zero closed ideal J in A, $\mathfrak{M}, (J)$ is the set of all H^{∞} -functions continuous on $D \sim F$, where D is the closed unit disc on the complex plane and F is the intersection of the zeros of the functions in J on the unit circle C ([7], Theorem 8). As A_1 is an essential maximal algebra, the question naturally arises: Does a similar theorem hold for arbitrary essential maximal algebra? The main purpose of this note is to answer the question under certain conditions and to give a generalization of the theorem mentioned above (cf. Theorem 2).

1. Let A be a function algebra on a compact Hausdorff space X. Let J be a non-zero closed ideal in A. By a multiplier of J we mean a function φ on $X \sim h(J)$ such that $\varphi J \subset J$, where h(J), the hull of J, is the set of points at which every function in Jvanishes. Every multiplier of J is a bounded continuous function on the locally compact space $X \sim h(J)$. We denote the set of all multipliers of J by $\mathfrak{M}(J)$. M(X) denotes the set of all complex. finite, regular Borel measures μ on X and a $\mu \in M(X)$ is orthogonal to A $(\mu \perp A)$ means $\int f d\mu = 0$ for any $f \in A$. For μ in M(X), μ_F denotes the restriction of μ to F. $C(Y)_{\beta}$ denotes the space of bounded continuous functions on the locally compact space Y under the strict topology β of Buck ([3], [7]). Let A be a function algebra on X and let F be a closed subset of X. Then F is said to have the condition (P) if $\mu_F \perp A$ for every $\mu \perp A$. If F has (P), it is an intersection of peak sets ([4]). Wells [7] has proved the following theorem: $\underline{\mathfrak{M}}(kF)$ is the closure of kF in $C(X \sim F)_{\beta}$ if and only if F has (P), where $kF = \{f \in A: f(F) = 0\}$. Let $F_0 = h(J)$, then $\mathfrak{M}(kF_0, J)$ denotes the set of all functions φ on $X \sim F_0$ such that $\varphi \cdot kF_0 \subset J$. Every function in $\mathfrak{M}(kF_0, J)$ is a bounded continuous No. 10]

function on $X \sim F_0$.

Theorem 1. Let J be a non-zero closed ideal in a function algebra on X and let $F_0 = h(J)$. If F_0 has (P), then $\mathfrak{M}(kF_0, J)$ is the closure of J in $C(X \sim F_0)_{\beta}$.

Proof. Since F_0 has (P), F_0 is an intersection of peak sets, so we can set $F_0 = \bigcap_j F_j$, $F_j = \{x: g_j(x) = 1\}$, where every g_j is a function in A such that $|g_j(x)| < 1$ if $x \notin F_j$. If we put

 $h_{j_1,j_2,\ldots,j_m,n} = 1 - (g_{j_1}g_{j_2}\cdots g_{j_m})^n$,

then these functions are contained in $k(F_0)$. We can here prove that $h_{j_1, j_2, \dots, j_m, n}$ converges to 1 under the topology β , where the ordering > of the directed set $\{(j_1, j_2, \dots, j_m, n)\}$ is the following; $(j_{p_1}, j_{p_2}, \dots, j_{p_s}, n) > (j_{q_1}, j_{q_2}, \dots, j_{q_t}, n')$ if the finite set $j_{p_1}, j_{p_2}, \dots, j_{p_s}$ $\supset j_{q_1}, j_{q_2}, \dots, j_{q_t}$ and $n \ge n'$. For, let f be a continuous function on $X \sim F_0$ which vanishes at infinity. Then if we put f(x) = 0 for any $x \in F_0, f$ can be regarded a continuous function on X. We set $U_0 = \{x \in X: |f(x)| < \varepsilon\}$. Since $\bigcap_j F_j = F_0 \subset U_0, F_{j_1} \cap F_{j_2} \cap \dots \cap F_{j_m} \subset U_0$ for some j_1, j_2, \dots, j_m and

 $\sup \{ | (g_{j_1}g_{j_2} \cdots g_{j_m})(x) | ; x \in X \sim U_0 \} < 1.$

Therefore $||(g_{j_1}g_{j_2}\cdots g_{j_m})^n f||_{\infty} < \varepsilon$ for any $n > \text{ some } n_0$. This shows that $||(1-h_{j_1,j_2,\ldots,j_m,n})f||_{\infty} \to 0$. Now let φ be any function in $\mathfrak{M}(kF_0, J)$, then $\varphi h_{j_1,j_2,\ldots,j_m,n} \in J$ and $\varphi h_{j_1,j_2,\ldots,j_m,n}$ converges to φ under the topology β , so $\mathfrak{M}(kF_0, J)$ is contained in the closure \overline{J}^{β} of J under β . Conversely, it is obvious that $\mathfrak{M}(kF_0, J) \supset \overline{J}^{\beta}$.

Remark. As we see in the proof of Theorem 1, for any $\varphi \in \underline{\mathfrak{M}}(kF_0, J) \ \varphi h_{j_1, j_2, \dots, j_m, n}$ converges to φ under β . We see here that $|| \varphi h_{j_1, j_2, \dots, j_m, n} ||_{\infty} \leq || \varphi ||_{\infty} || h_{j_1, j_2, \dots, j_m, n} ||_{\infty} \leq 2 || \varphi ||_{\infty}$.

2. Let A be a function algebra on X and let S(A) be the maximal ideal space of A. Let J be a non-zero closed ideal in A. Since A can be regarded as a function algebra on S(A), we denote the function algebra by \hat{A} : $\hat{A} = \{\hat{f}: f \in A\}$ and $\hat{f}(m) = m(f)$ for any $m \in S(A)$, in other words, for any non-zero homomorphism m on A. $\hat{J} = \{\hat{f}: f \in J\}$ is a closed ideal in \hat{A} and $\mathfrak{M}(\hat{J})$ can be defined as a subalgebra of $C(S(A) \sim \hat{F}_0)$, where $\hat{F}_0 = h(\hat{J})$. We shall use the symbol $\mathfrak{M}(J)$ in the place of $\mathfrak{M}(\hat{J})$. $H_{F_0}^{\infty}$ is the set of all bounded continuous functions u on $S(A) \sim F_0$ having the following condition; there is a net $\{\hat{u}_{\lambda}\}$ in \hat{A} which is uniformly bounded $(|| \hat{u}_{\lambda} ||_{\infty} \leq \text{some } M)$, and \hat{u}_{λ} converges uniformly to u on every compact subset in $S(A) \sim F_0$.

Let A_1 be the disc algebra, that is, the algebra of all continuous functions on $C = \{z: |z| = 1\}$ with continuous extensions to $D = \{z: |z| \leq 1\}$, analytic in the interior of D. Wells [7] has proved the following theorem: Let J be a non-zero closed ideal in A_1 and let F be the intersection of zeros of the functions in J on C. Then $\mathfrak{M}(J)$ is the set of all H^{∞} functions continuous on $D \sim F$. We see here that F has (P) since F has Lebesgue measure zero, and $h(\hat{J})$ is non dense in D (cf. [5]). Moreover, we easily see that in the disc algebra A_1 H_F^{∞} is equal to the set of all H^{∞} functions continuous on $D \sim F$.

Following theorem is a generalization of the theorem mentioned above.

Theorem 2. Let A be an essential maximal algebra and let J be a non-zero closed ideal in A. If $F_0 = h(J)$ has (P) (cf. §1) and if $\hat{F}_0 = h(\hat{J})$ is non dense in S(A), then $\mathfrak{M}(J) = \mathfrak{M}(kF_0) = H_{F_0}^{\infty}$.

Although any function φ is $\mathfrak{M}(J)$ is a continuous function on $S(A) \sim \hat{F}_0$, it can be extended continuously to a unique function in $C(S(A) \sim F_0)$. By a function φ in $\mathfrak{M}(J)$ in the above theorem, we mean the extended function of φ . Suppose that φ is a function in $\mathfrak{M}(J)$. To show that φ can be extended continuously to a function in $C(S(A) \sim F_0)$, we put $F_0 = \bigcap F_\alpha$, where $F_\alpha = \{x: g_\alpha(x) = 1\}, g_\alpha$ is a function in A and $|g_{\alpha}(x)| < 1$ if $x \notin F_{\alpha}$. If $h_{\alpha} = 1 - g_{\alpha}, h_{\alpha}(F_{\alpha}) = 0$, and $h_{\alpha}(x) \neq 0$ for $x \in X \sim F_{\alpha}$. If ψ is the restriction of φ to $X, \psi \in \mathfrak{M}(J)$ and ψh_{α} is a continuous function on X. Since $\psi h_{\alpha}J \subset \psi J \subset J$, by Wells ([7], Theorem 7), $\psi h_{\alpha} \in A$. On the other hand, for any \hat{f} in $\hat{J}, \varphi \hat{f} \hat{h}_{lpha} = \hat{g} \in \hat{J}.$ If we set $h_{lpha} \psi = p_{lpha}$, then $f p_{lpha} = g, \hat{f} \hat{p}_{lpha} = \hat{g}$, and $\varphi \hat{f} \hat{h}_{lpha}$ $=\hat{f}\hat{p}_{\alpha}$. Since $\hat{f}(\in \hat{A})$ is arbitrary, $\varphi \hat{h}_{\alpha} = \hat{p}_{\alpha}$ on $S(A) \sim \hat{F}_{0}$. Since \hat{h}_{α} never vanishes on $S(A) \sim F_{\alpha}$ (cf. [2]), $\rho_{\alpha}(x) = \hat{p}_{\alpha}(x)/\hat{h}_{\alpha}(x)$ is continuous on $S(A) \sim F_{\alpha}$. Since $S(A) \sim \hat{F}_0$ is dense in $S(A) \sim F_{\alpha}$ and φ is equal to ρ_{α} on $S(A) \sim (\hat{F}_0 \cup F_{\alpha})$ for any α , φ can be extended to a function in $C(S(A) \sim F_{0}).$

We first prove the following lemmas.

Lemma 1. If $F_0 = h(J)$ has (P), then $\mathfrak{M}(J) \supset \mathfrak{M}(kF_0)$.

Proof. If $\varphi \in \mathfrak{M}(kF_0)$, then $\varphi \cdot \hat{kF}_0 \subset \hat{kF}_0$, where $\hat{kF}_0 = \{\hat{f} : f \in kF_0\}$. For any $\hat{f} \in \hat{J}$, we have $\varphi \hat{f} \cdot \hat{kF}_0 \subset \hat{f} \cdot \hat{kF}_0 \subset \hat{J}$. Since F_0 has (P), there is a net $\{u_j\}$ in kF_0 such that u_j converges to 1 under the topology β , so $u_j f$ converges to f uniformly. Since $\hat{u}_j \hat{f}$ converges to \hat{f} uniformly and $\hat{u}_j \in \hat{kF}_0, \varphi \hat{f} \in \hat{J}$ and $\varphi \hat{J} \subset \hat{J}$.

Lemma 2. If A is an essential maximal algebra and if $\hat{F}_0 = h(\hat{J})$ is non dense in S(A), $\mathfrak{M}(J) \subset \mathfrak{M}(kF_0)$.

Proof. If $\varphi \in \mathfrak{M}(J)$, $\varphi \widehat{J} \subset \widehat{J}$. For any $\widehat{\alpha} \in k \widehat{F}_0$, $\varphi \widehat{\alpha}$ is continuous on S(A) and $\varphi \widehat{\alpha} \widehat{J} \subset \widehat{\alpha} \widehat{J} \subset \widehat{J}$, so $\varphi \widehat{\alpha} \in \mathfrak{M}(J)$. By the following lemma, $\varphi \widehat{\alpha} \in \widehat{A}$, and since $\varphi \widehat{\alpha}(F_0) = 0$, $\varphi \widehat{\alpha} \in \widehat{k} \widehat{F}_0$. This shows that $\varphi \in \mathfrak{M}(kF_0)$.

We shall prove the following lemma, which is similar to a theorem of Wells ([7], Theorem 7).

Lemma 3. If $\hat{F}_0 = h(\hat{J})$ is non dense in S(A) and if A is an essential maximal algebra, then any function φ in $\mathfrak{M}(J)$ which

No. 10]

can be extended continuously to a function in C(S(A)) is in \widehat{A} .

Proof. We set $B = \{f \in C(S(A))\}$: the restriction of f to $S(A) \sim \hat{F}_{0}$ is in $\mathfrak{M}(J)$. Then we easily see that B is a closed subalgebra in C(S(A)) and $B \supset \hat{A}$. To prove that the Šilov boundary ∂_B of B is equal to $\partial_{\mathbf{A}}(=X)$, it suffices to show that the Choquet boundary $M_{\mathbf{B}}$ of B is contained in ∂_A ([6], p. 40). If $x_0 \in M_B$, then for any neighborhood $V(x_0)$ of x_0 in S(A) there is a function $f_0 \in B$ such that $|f_0(x_0)| > 1$ and $|f_0(x)| \leq \text{ some } \eta < 1$ for any $x \in S(A) \sim V(x_0)$. Take a neighborhood $W(x_0)$ of x_0 in S(A) such that $V(x_0) \supset W(x_0)$ and $|f_0(x)| > 1$ for any $x \in W(x_0)$, then there is a point $x' \in W(x_0) \sim \widehat{F}_0$, since \hat{F}_0 is non dense in S(A). Since $\hat{F}_0 \not\ni x'$ there is a function $\hat{g} \in \hat{J}$ such that $\hat{g}(x') \neq 0$, and we can here assume that $\hat{g}(x') = 1$. If we set $\hat{h} = \hat{g} f_0^n$, then $\hat{h} \in \hat{J}$ and for a sufficiently large $n, |\hat{h}(x')| > 1$ and $|\hat{h}(y)| \leq \text{ some } \eta' < 1 \text{ for any } y \text{ in } S(A) \sim V(x_0), \text{ so } x_0 \in \partial_A.$ Now if B_1 is the restriction of B to $X, A \subset B_1 \subset C(X)$. Since A is maximal, it follows that $A = B_1$ or $B_1 = C(X)$. If $A=B_1$, we obviously see that $B = \hat{A}$ since $\partial_A = \partial_B = X$. In this case, any $f \in C(S(A))$ whose restriction to $S(A) \sim \hat{F}_0$ is in $\mathfrak{M}(J)$ is a function of \hat{A} . Next we shall show that B_1 is not equal to C(X). Assume the contrary and let \hat{f}_0 be a non-zero fixed function in \hat{J} , then $Z(\widehat{f}_{\scriptscriptstyle 0})
earrow X$, where $Z(\widehat{f}_{\scriptscriptstyle 0}) = \{x \in S(A), \widehat{f}_{\scriptscriptstyle 0}(x) = 0\}$. We take an open set U in X such that $Z(\hat{f}_0) \cap X \subset U \subset \bar{U} \subsetneq X$, where \bar{U} is the closure of U in X. We shall prove here that any function $f \in C(X)$ such that f(U)=0 is in A. If this were proved, A would be not an essential algebra ([1]). This contradiction shows that B_1 is not equal to C(X). Let f be a function in C(X) such that f(U)=0. Since f_0 never vanishes on $X \sim U$, f_0^{-1} can be extended continuously to a function h of C(X). If we put $\varphi = fh$, then $\varphi \in C(X)$ and $\varphi f_0 = f$. Since $B_1 = C(X)$, $\varphi = b$ on X for some $b \in B$, and $b\hat{f}_0 \in b\hat{J} \subset \hat{J} \subset \hat{A}$ and $f=f_0\varphi\in A$.

The proof of Theorem 2. By Lemmas 1 and 2, it remains only to prove that $\mathfrak{M}(kF_0) = H^{\infty}_{F_0}$. Since F_0 has (P), F_0 is an intersection of peak sets in X. Since A is an essential maximal algebra, by Bear [2], F_0 is an intersection of peak sets in S(A). By the remark of Theorem 1, for any u in $\mathfrak{M}(kF_0)$, there is a net $\{\hat{u}_k\} \subset kF_0$ such that $|| \hat{u}_k || \leq 2 || u ||$ and for any $\hat{f} \in kF_0 \hat{u}_k \hat{f}$ converges uniformly to $u\hat{f}$ on S(A), so it is clear that $\mathfrak{M}(kF_0) \subset H^{\infty}_{F_0}$. Conversely, let ube a function in $H^{\infty}_{F_0}$, then there is a net $\{\hat{u}_i\} \subset \hat{A}$ such that $|| \hat{u}_j ||$ \leq some M and \hat{u}_j converges uniformly to u on every compact subset in $S(A) \sim F_0$. Since there is a net $\{\hat{\varphi}_k\} \subset k\hat{F}_0$ such that $|| \hat{\varphi}_k || \leq 2$ and $\hat{\varphi}_k$ converges to 1 under β , we obviously see that the net $\{\hat{u}_i\hat{\varphi}_k\} \subset k\hat{F}_0$ converges to u under the topology β on $S(A) \sim F_0$. This shows that $H^{\infty}_{F_0} \subset \mathfrak{M}(kF_0).$

Remark. In Theorem 2, if we assume " \hat{A} is an analytic algebra" in the place of " \hat{F}_0 is non dense", the conclusion still holds.

References

- [1] H. S. Bear: Complex function algebras. Trans. Amer. Math. Soc., 90, 383-393 (1959).
- [2] ----: A strong maximum modulus theorem for maximal function algebras. Trans. Amer. Math. Soc., **92**, 465-469 (1959).
- [3] R. C. Buck: Bounded continuous functions on a locally compact space. Michigan Math. J., 5, 95-104 (1958).
- [4] I. Glicksberg: Mesures orthogonal to algebras and sets of antisymmetry. Trans. Amer. Math. Soc., 105, 415-435 (1962).
- [5] K. Hoffman: Banach Spaces of Analytic Functions. Englewood Cliffs., N. J. (1962).
- [6] R. R. Phelps: Lectures on Choquet's Theorem. Van Nostrand, N. J. (1965).
- [7] J. Wells: Multipliers of ideals in function algebras. Duke Math. J., **31**, 703-709 (1964).