240. On Integers Expressible as a Sum of Two Powers

By Palahenedi Hewage Diananda
Department of Mathematics, University of Singapore, Singapore

(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1966)

1. In a recent paper [2] Uchiyama proved the following results.

Theorem 1. For every $n \geqq 1$ there are positive integers x and y satisfying

$$
n<x^{2}+y^{2}<n+2^{\frac{3}{2}} n^{\frac{1}{3}} .
$$

Theorem 2. For any $\varepsilon>0$ there is $n_{0}=n_{0}(\varepsilon)$ such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{h}+y^{h}<n+(c+\varepsilon) n^{a},
$$

where

$$
a=\left(1-\frac{1}{h}\right)^{2}, \quad c=h^{2-\frac{1}{h}} \quad \text { and } \quad h \geqq 2 .
$$

The case $h=2$ is due to Bambah and Chowla [1] and Theorem 1 is a refinement of their result.

It is the main purpose of this note to obtain the following refinement of Theorem 2.

Theorem 3. There is n_{0} such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{h}+y^{h}<n+c n^{a},
$$

where a, c, and h are as in Theorem 2.
This will be deduced from the following result.
Theorem 4. Let $h \geqq 2$,

$$
N=N(n)=\left(n^{1 / h}+1\right)^{h}-n+1
$$

and

$$
g(n)=N-\left(N^{1 / h}-1\right)^{h} .
$$

Then for every $n \geqq 1$ there are positive integers x and y satisfying

$$
n<x^{h}+y^{h}<n+g(n) .
$$

The case $h=2$ of Theorem 3 is weaker than Theorem 1 which however can be obtained easily from Theorem 4.

Extensions of Theorems 4 and 2 and another result of Uchiyama to sums of the form $x^{f}+y^{h}$ (in place of $x^{h}+y^{h}$) will be given later.

Our proofs have similarities with those of Uchiyama and Bambah and Chowla.
2. We omit the proof of Theorem 4 which is a special case of Theorem 4A to be proved later.

Theorem 3 follows easily from Theorem 4 and the following
lemma.
Lemma 1. $g(n)<c n^{a}$ for large n.
Proof. We have

$$
\begin{aligned}
N(n) & =\left(n^{1 / h}+1\right)^{h}-n+1 \\
& =h n^{1-\frac{1}{h}}\left\{1+O\left(n^{-\frac{1}{h}}\right)\right\},
\end{aligned}
$$

as $n \rightarrow \infty$. Hence

$$
\begin{aligned}
g(n) & =N-\left(N^{1 / h}-1\right)^{h} \\
& =h N^{1-\frac{1}{h}}\left\{1-\frac{h-1}{2} N^{-\frac{1}{h}}+O\left(N^{-\frac{2}{h}}\right)\right\} \\
& =c n^{a}\left\{1-\frac{h-1}{2} h^{-\frac{1}{h}} n^{-\frac{h-1}{h^{2}}}+O\left(n^{-\frac{1}{h}}\right)\right\},
\end{aligned}
$$

as $n \rightarrow \infty$. Hence $g(n)<c n^{a}$ for large n.
Remark 1. $g(n) \sim c n^{a}$ for large n.
Remark 2. When $h=2, N(n)=2\left(n^{\frac{1}{2}}+1\right)$ and so, for $n \geqq 3, g(n)$ $=2^{\frac{3}{2}}\left(n^{\frac{1}{2}}+1\right)^{\frac{1}{2}}-1<2^{\frac{3}{2}} n^{\frac{1}{4}}$ since $2^{\frac{3}{2}}<\left(n^{\frac{1}{2}}+1\right)^{\frac{3}{2}}+n^{\frac{1}{4}}$. Also $g(n) \approx 3.4 \approx 2^{\frac{3}{2}} n^{\frac{1}{4}}$ for $n=2$ and $g(n)=3,2^{\frac{3}{2}} n^{\frac{1}{4}} \approx 2.8$ for $n=1$. Hence Theorem 1 follows easily from Theorem 4.
3. We now generalize Theorems 4 and 2.

Theorem 4A. Let f and $h \geqq 2$,

$$
N=N(n)=\left(n^{1 / \rho}+1\right)^{\rho}-n+1
$$

and

$$
g(n)=N-\left(N^{1 / h}-1\right)^{h} .
$$

Then for every $n \geqq 1$ there are positive integers x and y satisfying

$$
n<x^{\rho}+y^{h}<n+g(n) .
$$

Proof. Clearly N increases with n and $g(n)$ with N. Thus $N \geqq 2^{f} \geqq 4$ and $g(n) \geqq 4-\left(4^{1 / h}-1\right)^{h} \geqq 3$. Thus the theorem is clearly true if $\left[n^{1 / \rho}\right]=n^{1 / \rho}$. In the rest of the proof we therefore assume that

$$
\begin{equation*}
m=\left[n^{1 / f}\right]<n^{1 / f} . \tag{1}
\end{equation*}
$$

The theorem is clearly true if

$$
(m+1)^{\jmath}+1<n+g(n) .
$$

In the rest of the proof we therefore assume that

$$
\begin{equation*}
(m+1)^{\jmath}+1 \geqq n+g(n) . \tag{2}
\end{equation*}
$$

Since

$$
m^{\rho}+\left\{\left[\left(n-m^{f}\right)^{1 / h}\right]+1\right\}^{h} \leqq m^{\rho}+\left\{\left(n-m^{f}\right)^{1 / h}+1\right\}^{h}
$$

the theorem follows easily from the following lemma.
Lemma 2. (1) and (2) imply that

$$
m^{f}+\left\{\left(n-m^{f}\right)^{1 / h}+1\right\}^{h}<n+g(n)
$$

Proof. From (2)

$$
n-m^{\rho} \leqq(m+1)^{f}-m^{f}+1-g(n)
$$

Clearly $(m+1)^{\rho}-m^{\rho}$ increases with m. Hence from (1)

$$
\begin{aligned}
n-m^{\rho} & <\left(n^{1 / \rho}+1\right)^{\rho}-n+1-g(n) \\
& =N-g(n)=\left(N^{1 / h}-1\right)^{h} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
m^{f}+\left\{\left(n-m^{f}\right)^{1 / h}+1\right\}^{h} & =n+\left\{\left(n-m^{f}\right)^{1 / h}+1\right\}^{h}-\left(n-m^{f}\right) \\
& <n+N-\left(N^{1 / h}-1\right)^{h}=n+g(n)
\end{aligned}
$$

since $\left\{\left(n-m^{f}\right)^{1 / h}+1\right\}^{h}-\left(n-m^{f}\right)$ clearly increases with $n-m^{f}$. This completes the proof.

Remark 3. In the definitions of $N(n)$ and $g(n)$ in Theorem 4A the roles of f and h can be interchanged to yield a new function $g(n)$.

Theorem 2A. For any $\varepsilon>0$ there is $n_{0}=n_{0}(\varepsilon)$ such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{f}+y^{h}<n+(c+\varepsilon) n^{a},
$$

where

$$
a=\left(1-\frac{1}{f}\right)\left(1-\frac{1}{h}\right), \quad c=h f^{1-\frac{1}{h}} \quad \text { and } f \text { and } h \geqq 2 \text {. }
$$

This follows from Theorem 4A and the following lemma.
Lemma 3. $g(n) \sim c n^{a}$ for large n.
Proof. We have

$$
N(n)=\left(n^{\frac{1}{f}}+1\right)^{s}-n+1 \sim f n^{1-\frac{1}{f}}
$$

for large n. Hence

$$
g(n)=N-\left(N^{\frac{1}{n}}-1\right)^{n} \sim h N^{1-\frac{1}{n}} \sim c n^{a}
$$

for large n. This completes the proof.
Remark 4. In Theorem 2A we can replace c by $C=f h^{1-\frac{1}{f}}$ by interchanging f and h. If $f<h$ there is an improvement since $C<c$. If $f>h$ it can be proved that $c+\varepsilon$ can be replaced by C but there is no improvement since $c+\varepsilon<C$ if ε is small.
4. We omit the proof of the following result result.

Theorem 5. For any $\varepsilon>0$ the set of integers n for which the interval $\left(n, n+\varepsilon n^{a}\right)$, where a, f, and h are as in Theorem $2 A$, contains an integer of the form $x^{f}+y^{h}$ has a positive density.

The case $f=h$ is due to Uchiyama [2]. His proof can be easily modified to prove our result.

References

[1] R. P. Bambah and S. Chowla: On numbers which can be expressed as a sum of two squares. Proc. Nat. Inst. Sci. India, 13, 101-103 (1947).
[2] S. Uchiyama: On the distribution of integers representable as a sum of two h-th powers. J. Fac. Sic., Hokkaidô Univ., Ser. I, 18, 124-127(1965).

