17. On a Theorem Concerning
 Trigonometrical Polynomials

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m.J.A., Feb. 13, 1967)

§ 1. H. Davenport and H. Halberstan [1] have proved the following theorem from which they have derived a generalization of theorems of K. F. Roth [2] and E. Bombieri [3] on the large sieve:

Thoerem DH1. ${ }^{1{ }^{1}}$ Let $S_{\mathrm{N}}(x)$ be a trigonometrical polynomial of order N such that

$$
S_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

and $x_{1}, x_{2}, \cdots, x_{R}(R \geqq 2)$ be distinct points on $(-\pi, \pi)$ such that

$$
2 \delta=\min _{j \neq k}\left|x_{j}-x_{k}\right| .
$$

Then

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S_{N N}\left(x_{r}\right)\right|^{2} \leqq 4 \cdot 4 \max (N, \pi / 2 \delta) \sum_{n=-N}^{N}\left|c_{N}\right|^{2} . \tag{1}
\end{equation*}
$$

Our first theorem is as follows:
Theorem 1. Using the same notation as in Theorem DH1, we have

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{2} \leqq A \sum_{n=-N}^{N}\left|c_{n}\right|^{2} \tag{2}
\end{equation*}
$$

for small δ, where $A \leqq 2.34(N+\pi / \delta)$ or $A \leqq 3.13(N+\pi / 2 \delta)$.
The inequalities (1) and (2) are mutually exclusive. If N is near to $\pi / 2 \delta$, then (1) is better than (2), but if they are very different, then (2) is better than (1), except for "small δ. ."

Further H. Davenport and H. Halberstan [1] proved the following
Theorem DH2. Using the same notation as in Theorem DH1, we have

$$
\begin{equation*}
\sum_{r=1}^{R} \mid S_{N}\left(x_{r}\right)^{p} \leqq A \sqrt{p} \max (N, 2 \pi / \delta)\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{q}\right)^{p / q} \tag{3}
\end{equation*}
$$

where A is an absolute constant and $1 / p+1 / q=1, p \geqq 2$.
Our second theorem is
Theorem 2. Using the same notation as in Theorem DH1,

1) In [1], Theorem DH1 is stated for the trigonometrical polynomial on the interval (0,1), that is, $S_{N}=\sum_{n=-N}^{N} c_{n} e^{2 \pi i n x}$. Further 2δ in $(-\pi, \pi)$ corresponds to $2 \delta / 2 \pi$ in (0,1).

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{p} \leqq A^{\prime}(1+\varepsilon)(N+\pi / \delta)\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{p}\right)^{p / q} \tag{4}
\end{equation*}
$$

for any $\varepsilon>0$ and sufficiently small δ, where $1 / p+1 / q=1, p \geqq 2$ and

$$
A^{\prime}=\frac{2^{p-2}}{\pi^{p}(q+1)^{p-1}}\left(\int_{0}^{\infty} \frac{|\sin v|^{q}}{v^{q}} d v\right)^{p-1} /\left(\int_{0}^{x / 2} \frac{\sin ^{2} v}{v^{2}} d v\right)^{p} .
$$

Taking $p=3,4$, and 5 , we get

$$
\begin{align*}
& \sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{3} \leqq 0.053(1+\varepsilon)(N+\pi / \delta)\left(\sum_{n=N}^{N}\left|c_{n}\right|^{5 / 2}\right)^{2}, \tag{5}\\
& \sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{4} \leqq 0.076(1+\varepsilon)(N+\pi / \delta)\left(\sum_{n=-N}\left|c_{n}\right|^{1 / 3}\right)^{3}, \tag{6}\\
& \sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{3} \leqq 0.143(1+\varepsilon)(N+\pi / \delta)\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{5 / 4}\right)^{4} . \tag{7}
\end{align*}
$$

Our theorems have the application similar to [1]. For example, we have

Theorem 3. If $S_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{2 \pi i n x}$, then

$$
\exists Q_{0}: \sum_{q \leq Q} \sum_{\substack{a, a)=1 \\(a, q)=1}}\left|S_{N}(a / q)\right|^{2} \leqq 2.4\left(N+Q^{2}\right) \sum_{n=-N}^{N}\left|c_{n}\right|^{2} \text { for all } Q \geqq Q_{0} .
$$

Our method of proof of Theorem 1 and 2 is different from [1] and is adopted from our paper [4]. In § 2, we prove a formula for $S_{N}(x)$ which is used later. In § 3 we prove Theorem 1 and in § 4 Theorem 2 is proved.
§ 2. General formula. Let $f(t)$ be an integrable function having $S_{N}(x)$ as the N th partial sum of its Fourier series, then

$$
S_{N}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_{N}(x-t) d t=\frac{1}{\pi} \int_{-\pi}^{\pi} S_{N}(t) D_{N}(x-t) d t
$$

where $D_{N}(t)$ is the N th Dirichlet kernel, i.e.

$$
\begin{equation*}
D_{N}(t)=\frac{1}{2}+\sum_{k=1}^{N} \cos k t=\frac{\sin (N+1 / 2) t}{2 \sin t / 2} . \tag{8}
\end{equation*}
$$

Let $\left(\lambda_{n}\right)$ be a sequence of real numbers which are determined later, then we have the inequality (cf. [4])

$$
\begin{aligned}
\sum_{n=N}^{M} \lambda_{n} D_{n}(t) & =\sum_{n=N}^{M} \lambda_{n}\left(D_{N}(t)+\sum_{m=N+1}^{n} \cos n t\right) \\
& =\sum_{n=N}^{M} \lambda_{n} D_{N}(t)+\sum_{m=N+1}^{M}\left(\sum_{n=m}^{M} \lambda_{n}\right) \cos m t .
\end{aligned}
$$

If we put $\Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}$, then we get

$$
\sum_{n=N}^{M} \lambda_{n} D_{n}(t)=\left(\Lambda_{\boldsymbol{M}}-\Lambda_{N-1}\right) D_{N}(t)+\sum_{m=N+1}^{M}\left(\Lambda_{\boldsymbol{k}}-\Lambda_{m-1}\right) \cos m t
$$

and then

$$
\begin{align*}
D_{N}(t) & =\frac{1}{\Lambda_{\mu}-\Lambda_{N-1}} \sum_{n=N}^{M} \lambda_{n} D_{n}(t)-\frac{1}{\Lambda_{\boldsymbol{M}}-\Lambda_{N-1}} \sum_{n=N+1}^{M}\left(\Lambda_{\boldsymbol{k}}-\Lambda_{n-1}\right) \cos n t \tag{9}\\
& =D_{N, 1}(t)-D_{N, 2}(t), \quad \text { say. }
\end{align*}
$$

We have, by (8),

$$
\begin{aligned}
D_{N, 1}(t) & =\frac{1}{\Lambda_{M}-\Lambda_{N-1}} \cdot \frac{1}{2 \sin t / 2} \sum_{n=N}^{M} \lambda_{n} \sin (n+1 / 2) t \\
& =\frac{1}{\Lambda_{N}-\Lambda_{N-1}} \cdot \frac{1}{2 \sin t / 2} \mathscr{I}\left(\sum_{n=N}^{M} \lambda_{n} e^{i(n+1 / 2) t}\right) .
\end{aligned}
$$

We write $\mu=\left[\frac{1}{2}(M+N)\right]$ and $\nu=\left[\frac{1}{2}(M-N)\right]-1$ and we suppose that $\lambda_{\mu+n}=\lambda_{\mu-n}$ for $0<n \leqq \nu$ and the other λ_{n} vanishes, then

$$
\begin{align*}
D_{N, 1}(t) & =\frac{1}{\Lambda_{\mu}-\Lambda_{N-1}} \frac{1}{2 \sin t / 2} \mathscr{I}\left(e^{i(\mu+1 / 2) t} \sum_{n=-\nu}^{\nu} \lambda_{\mu+n} e^{i n t}\right) \\
& =\frac{1}{\Lambda_{\mu}-\Lambda_{N-1}} \frac{\sin (\mu+1 / 2) t}{2 \sin t / 2}\left(\lambda_{\mu}+2 \sum_{n=1}^{\nu} \lambda_{\mu+n} \cos n t\right) \tag{10}\\
& =\frac{1}{\Lambda_{\mu}-\Lambda_{N-1}} D_{\mu}(t)\left(\lambda_{\mu}+2 \sum_{n=1}^{\nu} \lambda_{\mu+n} \cos n t\right) .
\end{align*}
$$

Let g be the characteristic function of the interval $(-\delta, \delta)$ with period 2π and we take $\left(\lambda_{n}\right)$ such that $\lambda_{\mu}+2 \sum_{n=1}^{\nu} \lambda_{\mu+n} \cos n t$ is the ν th Cesàro mean of the Fourier series of g, that is,

$$
\begin{align*}
\lambda_{\mu}+2 \sum_{n=1}^{\nu} \lambda_{\mu+n} \cos n t & =\frac{1}{\pi} \int_{-\pi}^{\pi} g(u) K_{\nu}(t-u) d u \\
& =\frac{1}{\pi} \int_{-\delta}^{\delta} K_{\nu}(t-u) d u=\frac{1}{\pi} \int_{t-\delta}^{t+\delta} K_{\nu}(u) d u \tag{11}
\end{align*}
$$

where $K_{\nu}(u)$ is the ν th Fejér kernel and is defined by

$$
\begin{align*}
K_{\nu}(u) & =\frac{1}{\nu+1} \sum_{n=0}^{\nu} D_{n}(u)=\frac{1}{2}+\sum_{n=1}^{\nu}\left(1-\frac{n}{\nu+1}\right) \cos n u \tag{12}\\
& =\frac{\sin ^{2}(\nu+1) u / 2}{(\nu+1) 2 \sin ^{2} u / 2}
\end{align*}
$$

and then

$$
\begin{aligned}
\lambda_{\mu}+2 \sum_{n=1}^{\nu} \lambda_{\mu+n} \cos n t & =\frac{1}{\pi}\left\{\delta+\sum_{n=1}^{\nu}\left(1-\frac{n}{\nu+1}\right) \int_{-\delta}^{\delta} \cos n(t-u) d u\right\} \\
& =\frac{1}{\pi}\left\{\delta+2 \sum_{n=1}^{\nu}\left(1-\frac{n}{\nu+1}\right) \frac{\sin n \delta}{n} \cos n t\right\} .
\end{aligned}
$$

Therefore,

$$
\lambda_{\mu}=\frac{\delta}{\pi}, \quad \lambda_{\mu+n}=\frac{1}{\pi}\left(1-\frac{n}{\nu+1}\right) \frac{\sin n \delta}{n} \quad(n=1,2, \cdots, \nu)
$$

and

$$
\begin{equation*}
\Lambda_{\boldsymbol{x}}-\Lambda_{N-1}=\lambda_{\mu}+2 \sum_{n=1}^{\nu} \lambda_{\mu+n}=\frac{1}{\pi} \int_{-\delta}^{\delta} K_{\nu}(u) d u=\frac{2}{\pi} \int_{0}^{\delta} K_{\nu}(u) d u . \tag{13}
\end{equation*}
$$

Now, by (10) and (11)

$$
\begin{align*}
S_{N, 1}(x) & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_{N, 1}(x-t) d t \\
& =\frac{1}{\pi^{2}\left(\Lambda_{M}-\Lambda_{N-1}\right)} \int_{-\pi}^{\pi} f(t) D_{\mu}(x-t) d t \int_{x-t-\delta}^{x-t+\delta} K_{\nu}(u) d u \tag{14}\\
& =\frac{1}{\pi^{2}\left(\Lambda_{M}-\Lambda_{N-1}\right)} \int_{-\pi}^{\pi} f(t) D_{\mu}(x-t) d t \int_{x-\delta}^{x+\delta} K_{\nu}(u-t) d u \\
& =\frac{1}{\pi^{2}\left(\Lambda_{M}-\Lambda_{N-1}\right)} \int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi} f(t) D_{\mu}(x-t) K_{\nu}(u-t) d t .
\end{align*}
$$

Further, by (9)

$$
\begin{aligned}
S_{N, 2}(x) & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_{N, 2}(x-t) d t \\
& =\frac{1}{\pi\left(\Lambda_{\mu}-\Lambda_{N-1}\right)} \sum_{n=N+1}^{M}\left(\Lambda_{\boldsymbol{k}}-\Lambda_{n-1}\right) \int_{-\pi}^{\pi} f(t) \cos n(x-t) d t .
\end{aligned}
$$

If $f(t)$ is replaced by $S_{N}(t)$, then $S_{N, 2}(t)$ vanishes and then (14) becomes

$$
\begin{align*}
S_{N}(x) & =\frac{1}{\pi} \int_{-\pi}^{\pi} S_{N}(t) D_{N, 1}(x-t) d t \\
& =\frac{1}{\pi^{2}\left(\Lambda_{M}-\Lambda_{N-1}\right)} \int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi} S_{N}(t) D_{\mu}(x-t) K_{\nu}(u-t) d t . \tag{15}
\end{align*}
$$

We can also verify this formula directly.
§ 3. Proof of Theorem 1. We can suppose that $S_{N}(x)$ is real. By (15), we have

$$
\begin{aligned}
S_{N}^{2}(x) & =\frac{1}{\pi^{4}\left(\Lambda_{\mu}-\Lambda_{N-1}\right)^{2}}\left\{\int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi} S_{N}(t) D_{\mu}(x-t) K_{\nu}(u-t) d t\right\}^{2} \\
& \leqq \frac{1}{\pi^{4}\left(\Lambda_{\mu}-\Lambda_{N-1}\right)^{2}} \int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi} S_{N}^{2}(t) K_{\nu}^{2}(u-t) d t \int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi} D_{\mu}^{2}(x-t) d t \\
& =\frac{2 \delta}{\pi^{4}\left(\Lambda_{\mu}-\Lambda_{N-1}\right)^{2}} \int_{-\pi}^{\pi} D_{\mu}^{2}(t) d t \int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi} S_{N}^{2}(t) K_{\nu}^{2}(u-t) d t
\end{aligned}
$$

and then

$$
\begin{align*}
\sum_{r=1}^{R} S_{N}^{2}\left(x_{r}\right) & \leqq \frac{2 \delta}{\pi^{4}\left(\Lambda_{M}-\Lambda_{N-1}\right)^{2}} \int_{-\pi}^{\pi} D_{\mu}^{2}(t) d t \int_{-\pi}^{\pi} d u \int_{-\pi}^{\pi} S_{N}^{2}(t) K_{\nu}^{2}(u-t) d t \\
& =A \frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{N}^{2}(t) d t=A \sum_{n=-N}^{N} c_{n}^{2} \tag{16}
\end{align*}
$$

where

$$
A=\frac{4 \delta}{\pi^{3}\left(\Lambda_{\boldsymbol{H}}-\Lambda_{N-1}\right)^{2}} \int_{-\pi}^{\pi} K_{\nu}^{2}(t) d t \int_{-\pi}^{\pi} D_{\mu}^{2}(t) d t .
$$

Since

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} K_{\nu}^{2}(t) d t=\frac{1}{2}+\sum_{n=1}^{\nu}\left(1-\frac{n}{\nu+1}\right)^{2}=\frac{\nu}{3}+\frac{1}{6}+\frac{1}{3(\nu+1)}
$$

and

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} D_{\mu}^{2}(t) d t=\mu+\frac{1}{2}
$$

by the Parseval identity and (8) and (12), we get

$$
\begin{equation*}
A=\frac{4 \delta(\mu+1 / 2)}{\pi\left(\Lambda_{M}-\Lambda_{N-1}\right)^{2}}\left(\frac{\nu}{3}+\frac{1}{6}+\frac{1}{3(\nu+1)}\right) . \tag{17}
\end{equation*}
$$

If we take $\nu=[\alpha / \delta]$ and suppose that δ is sufficiently small, then, by (13),

$$
\begin{aligned}
\Lambda_{\mu}-\Lambda_{N-1} & \cong \frac{1}{\pi} \int_{-\alpha / \nu}^{\alpha / \nu} K_{\nu}(u) d u=\frac{2}{\pi(\nu+1)} \int_{0}^{\alpha / \nu} \frac{\sin ^{2}(\nu+1) u / 2}{2 \sin ^{2} u / 2} d u \\
& \cong \frac{4}{\pi(\nu+1)} \int_{0}^{\alpha / \nu} \frac{\sin ^{2}(\nu+1) u / 2}{u^{2}} d u \cong \frac{2}{\pi} \int_{0}^{\alpha / 2} \frac{\sin ^{2} v}{v^{2}} d v .
\end{aligned}
$$

By (17), we have

$$
\begin{equation*}
A \cong \frac{4(N+\alpha / \delta)}{3 \pi\left(\frac{2}{\pi} \int_{0}^{\alpha / 2} \frac{\sin ^{2} v}{v^{2}} d v\right)^{2}} \cong \frac{\alpha \pi}{3}\left(N+\frac{\alpha}{\delta}\right)\left(\int_{0}^{\alpha / 2} \frac{\sin ^{2} v}{v^{2}} d v\right)^{-2} \tag{18}
\end{equation*}
$$

If we put $\alpha=\pi$ or $\alpha=\pi / 2$ in (18), then

$$
A \leqq 2.34(N+\pi / \delta) \quad \text { or } \quad A \leqq 3.13(N+\pi / 2 \delta),
$$

respectively. This proves (2).
§4. Proof of Theorem 2. By (16) and the Hölder inequality, we have

$$
\begin{aligned}
\left|S_{N}(x)\right|^{p} \leqq & \frac{1}{\pi^{2 p}\left(\Lambda_{N}-\Lambda_{N-1}\right)^{p}}\left(\int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi}\left|S_{N}(t)\right|^{p} K_{\nu}^{p}(u-t) d t\right) . \\
& \cdot\left(\int_{x-\delta}^{x+\delta} d u \int_{-\pi}^{\pi}\left|D_{\mu}(x-t)\right|^{q} d t\right)^{p / q},
\end{aligned}
$$

where $1 / p+1 / q=1$, and $p \geqq 2$, and then

$$
\begin{align*}
\sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{p} \leqq & \frac{(2 \delta)^{p / q}}{\pi^{2 p}\left(\Lambda_{M}-\Lambda_{N-1}\right)^{p}} \int_{-\pi}^{\pi} K_{\nu}^{p}(t) d t \tag{19}\\
& \cdot\left(\int_{-\pi}^{\pi}\left|D_{\mu}(t)\right|^{q} d t\right)^{p / q} \int_{-\pi}^{\pi}\left|S_{N}(t)\right|^{p} d t
\end{align*}
$$

By the Hausdorff-Young theorem,

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{\nu}^{p}(t) d t\right)^{1 / p} \leqq \frac{1}{2}\left(1+2 \sum_{n=1}^{\nu}\left(1-\frac{n}{\nu+1}\right)^{q}\right)^{1 / q} \cong \frac{1}{2^{1 / p}} \frac{\nu^{1 / q}}{(q+1)^{1 / q}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{N}(t)\right|^{p} d t\right)^{1 / p} \leqq\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{q}\right)^{1 / q} . \tag{21}
\end{equation*}
$$

Further, we have

$$
\begin{aligned}
\int_{-\pi}^{\pi} \mid D_{\mu}(t) & \left.\right|^{q} d t=\frac{2}{2^{q}} \int_{0}^{\pi} \frac{|\sin (\mu+1 / 2) t|^{q}}{\sin ^{q} t / 2} d t \\
& \leqq \frac{1}{2^{q-1}}\left\{\left(\frac{\eta}{\sin \eta}\right)^{q} \int_{0}^{\eta} \frac{|\sin (\mu+1 / 2) t|^{q}}{t^{q}} d t+\pi^{q} \int_{\eta}^{\pi} \frac{|\sin (\mu+1 / 2) t|^{q}}{t^{q}} d t\right\} \\
& \leqq \frac{(\mu+1 / 2)^{q-1}}{2^{q-1}}\left\{\left(\frac{\eta}{\sin \eta}\right)^{q} \int_{0}^{\eta(\mu+1 / 2)} \frac{|\sin t|^{q}}{t^{q}} d t+\pi^{q} \int_{\eta(\mu+1 / 2)}^{\pi(\mu+1 / 2)} \frac{|\sin t|^{q}}{t^{q}} d t\right\} .
\end{aligned}
$$

This holds for any $\eta>0$. If we take η as a fixed small number and make μ so large enough, then we get

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|D_{\mu}(t)\right|^{q} d t \leqq \frac{1+\varepsilon}{2^{q-1}} \mu^{q-1} \int_{0}^{\infty} \frac{|\sin t|^{q}}{2 q-1} d t \tag{22}
\end{equation*}
$$

for any fixed δ and all sufficiently large μ. Substituting (20), (21), and (22) into (19), we get

$$
\begin{align*}
& \sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{p} \tag{23}\\
& \quad \leqq \frac{\left(1+\varepsilon^{\prime}\right)(2 \delta \nu)^{p / q} \mu}{2 \pi^{2 p-1}(q+1)^{p / q}\left(\Lambda_{M}-\Lambda_{N-1}\right)^{p}}\left(\int_{0}^{\infty} \frac{|\sin t|^{q}}{t^{q}} d t\right)^{p / q}\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{q}\right)^{p / q}
\end{align*}
$$

If we take $\nu=[\pi / \delta]$, then (23) becomes

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{p} \leqq \frac{2^{p-2}\left(1+\varepsilon^{\prime}\right)(N+\pi / \delta)}{\pi^{p}(q+1)^{p-1}} A^{\prime \prime}\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{q}\right)^{p / q} \tag{24}
\end{equation*}
$$

where

$$
A^{\prime \prime}=\left(\int_{0}^{\infty} \frac{|\sin v|^{q}}{v^{q}} d v\right)^{p-1} /\left(\int_{0}^{\pi / 2} \frac{\sin ^{2} v}{v^{2}} d v\right)^{p}
$$

Thus we get (4).
By the numerical calculation, we get ${ }^{1)}$

$$
\begin{aligned}
\frac{2^{p-2} A^{\prime \prime}}{\pi^{p}(q+1)^{p-1}} & \leqq 0.0528 \\
& \text { for } \quad p=3 \\
& \leqq 0.07576
\end{aligned} \text { for } \quad p=4, ~ f o .143 \quad \text { for } \quad p=5
$$

Thus we get (5), (6), and (7).

References

[1] H. Davenport and H. Halberstan: The values of a trigonometrical polynomial at well spaced points. Mathematika, 13, 91-96 (1966).
[2] K. F. Roth: On the large sieves of Linik and Renyi. Mathematika, 12, 1-9 (1965).
[3] B. Bombieri: On the large sieve. Mathematika, 12, 201-225 (1965).
[4] M. Izumi and S. Izumi: Some convergence criteria of Fourier series (to appear in Jour. Indian Math. Soc.).

