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1. Let / be a maximal abelian von Neumann algebra acting
on a separable Hilbert space (C), a faithful normal trace with a
normalized trace vector and G a countable freely acting ergodic
group of p-preserving automorphisms of . Then we can raise the
following questions with respect to automorphisms of / and auto-
morphisms of the crossed product G(R)/ of // by G.

1) What kind of automorphisms of / can be extended to what
kind of automorphisms of G(R)?

2) Especially, what kind of automorphisms of / can be ex-
tended to inner automorphisms of

3) What kind of unitary operators in G(R) induce inner auto-
morphisms of G(R)/ which preserve

4) How does the questions 1) or 2) depend on the properties
of G?

In this paper, the questions 1) and 4) will be discussed accord-
ing to several conditions. The questions 2) and 3) are already dis-
cussed in 1 and

Hereafter, we assume all automorphisms of / are p-preserving
*-automorphisms, and the terminology and the notations of 2 will
be employed without further explanations.

2. We shall reformulate a theorem of I. M. Singer 5; Lemma
2.2 using the terminology of the crossed product:

Theorem 1. Let be a maximal abelian yon Neumann algebra
acting on a separable Hilbert space (C), a faithful normal trace
with a normalized trace vector, G a countable freely acting ergodic
group of automorphisms of and a an inner automorphism of
G(R)_ such that

Then a is induced by a unitary operator
VE U ,

gG

where V and E satisfy the following conditions:
(1) V is a unitary operator in
(2) E is a projection in for each g G,
(3) EgE=O for gh,
(4)
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(5) E is absolutely fixed under ag-, where is a restriction

of ainU.
The projection E in Theorem 1 is equal to the projection F(a, g)

in / which is a maximal projection absolutely fixed under ag-,
cf.

A counterpart of Theorem 1 for finite factors is discussed in

In what follows, the notations in Theorem 1 will be employed
throughout.. In this section, we shall discuss the question 1). As well
known, any (C-preserving) automorphism a of can be extended to
an automorphism of G(R). However, it is not obvious that there
exists a desired extension of a if 0 is restricted by certain condi-
tions. We shall give an answer for a very restrictive one"

Theorem 2. Let and G be same as in Theorem 1, and o
an automorphism of . Then can be extended to an automor-
phism of G(R) such that, for each g e G,

U- U for some h e G,
if and only if satisfies

o-lGo- G.
Proof. If a can be extended to an automorphism t of G(R)/

which satisfies the requirement of the theorem, then h depends on
g, that is, h-(g), and is an automorphism of G because t is an
automorphism. Since

U()A-’ (UA-) -(AU)
A U()- U()A(-),

for any A e // and h e G, we have ((h-1) -O-h-O. Hence
(h)

for any h e G. Therefore, a-lGaG. Since t- is an extension of
a-, a similar computation shows that aGa-G. Hence we have

Conversely, let a-Ga-G, then we can define an automorphism
a of G by

9(g) a-lga.
Using this automorphism , define the mapping t by

(A U,)-A" U(,) for any g G and A /.
On the other hand, if we define

U’(g(R)A)-(g)(R)A",

and U’ g(R)A U’(g(R)A),
i=1

then the mapping U’ can be extended to a unitary operator U on
G(R)(C). And we have
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UAUU*(g@B UAU(-l(g)(R)B-1)
U(h-(g)(R)AB-1-1)

=AU()(g(R)B)
=(AU)(g(R)B),

for any gG and A, Be. Therefore,
(AU) UAUU*.

Hence a can be extended to an automorphism of G.
4. In this section, we shall discuss the question 4).
Theorem . Let , G, a, V, and E be as in Theorem 1.

Let be an automorphism of G. Then the following conditions
are equivalent:
6 U- U() for every g e G,

(7) (VE) VE-() for every g and h in G.
Proof. Assume (6). Then

UU-
By direct computations, we have

and UU()-( VEU)U()- e VEU().

Hence we have
(VE-+(>)-U+(:)- VE

hG hG

Comparing the coefficients of U+(> in the both sides, we have (7).
Conversely, suppose (7). Then we have

UU() VEU() (VE-(>)-U(> UU.
hG hG

This proves the theorem.
Theorem 4. If the set I-{hgh-; h G} is infinite for each

geG, gl, then the automorphism a,al, of G such that
U[- U for every g G is outer.

Proof. Suppose that a is an inner automorphism of G.
Then, since a preserves the algebra by U[-U, a is induced by

gG

of Theorem 1. Therefore, by Theorem 3, we have
(8) (VE) VE- for every g and h in G.
Putting h-1 in (8), we have

(VEx) VE,
for every g G. Therefore, by the ergodicity of G, VE is a scalar
multiple of the identity. Hence E is either I or 0.

Now, we shall divide the proof in two cases:
Case 1. Suppose E1-1. Then E-0 for all g1 by (4). Hence

U= VU-V, so that a-l, which contradicts the hypothesis that
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Case 2. Suppose E-0. Then E=/=0 for some h=/=l. By (8),
E-- Y *( VE)

for each g e G, and
]1E- I- [I V*( VE) - II E II,

where ]l A-g(A,A) for any A + . Since I is infinite, we have
1-[ EI E- [ E- ++,

gG kIh kIh

which is a contradiction.
Theorem 5. If G is an abelian group and if an inner aut-

omorphism a of G satisfies U[-U for every g G, then a is
induced by U for some h G.

Proof. Suppose that a is induced by
u-

gG

of Theorem 1. By Theorem 3, U[-U implies
VE)- VE-- VE

for every g and h in G. By the ergodicity of G, we have
VE-aI

for each heG, where a is a scalar. Hence E-0 or i for each
h e G. Therefore, we have

U- VEU a U
gG

for some h e G. Consequently, a is induced by U.
5. Before to conclude the note, we shall discuss a relation

between a certain group G and its full group G introduced by
H. A. Dye 3.

Theorem 6. If G is an abelian group which is ergodic and
freely acting on , hen G is a maximally abelian subgroup in
the full group G determined by G.

Proof. Let be an automorphism in G such that g-g
for every g G. Then by 1; Theorem 1 can be extended to an
inner automorphism of G which is induced by a unitary operator

gG

where E-F(, g).
For any projection QgE, we have Q-gE, so that

Hence Q-Q. Therefore E is absolutely fixed under g-,
and so EE. Since h is 0-preserving and since is faithful, we
have E-E for every g and h in G. Therefore E-0 or 1 for
every gG since G is ergodic. By (4) of Theorem 1, we have
U= U for some g e G. This completes the proof of the theorem.
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