67. Relations between Volumes and Measures

By Witold M. BOGDANOWICZ

Catholic University of America, Washington, D. C., U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1967)

Introduction. A function v defined on a family V of sets of a space X is called a *volume* if the following two conditions are satisfied:

(1) The family V is a prering, that is the family is non-empty and if $A, B \in V$ then $A \cap B \in V$ and

$$A \backslash B = C_1 \cup \cdots \cup C_k,$$

where $C_j \in V$ are disjoint sets.

(2) The function v is non-negative, finite-valued, and countably additive on the prering V.

A volume v is called upper complete if the condition $A_n \in V$ and $\sum_n v(A_n) < \infty$ implies $A = \bigcup_n A_n \in V$. If in addition the condition $A \subset B \in V$ and v(B) = 0 implies $A \in V$, then the volume v is called complete.

In §1 we investigate upper complete volumes. The main result of the section is that upper complete volumes are in 1-1 correspondence with δ -finite measures. In this section we also establish the existence of *minimal extensions* of upper complete volumes to measures.

In §2 we prove that for every volume v there exists the *smallest complete measure* being an extension of the volume v. This result permits us to prove the classical theorem on extension of volumes. Namely if v is a volume on a prering V and M is the smallest σ -ring containing V, then there exists one and only one measure μ on M being an extension of the volume v. It is established that the completion of the measure μ_{e} yields the *smallest complete measure* being an extension of the volume v.

It is also established that for every volume v there exists the *smallest upper complete volume* being an extension of the volume v. The existence of the smallest complete volume satisfying this condition was established in [9].

§1. Relations between upper complete volumes and measures.

Theorem 1. Let v be an upper complete volume on V and let M_0 be the family of all sets of the form $A = \bigcup_{n=1}^{\infty} A_n, A_n \in V$. Then the family M_0 is a sigma-ring.

Theorem 2. Let v be an upper complete volume on V and let

 $M_{\scriptscriptstyle 0}$ be the sigma-ring

 $M_{\scriptscriptstyle 0} = \{A : A = \bigcup_{n=1}^{\infty} A_n, A_n \in V\}.$

There exists one and only one measure μ_0 on M_0 being an extension of the volume v. The measure is given by the formula

 $\mu_0(A) = \sup\{v(B) : B \subset A, B \in V\}$ for all $A \in M_0$.

Denote by p the operator mapping an upper complete volume v into the measure μ_0 defined in Theorem 2.

If μ, η are two functions then the order relation $\eta \subset \mu$ will mean that the function μ is an extension of the function η .

If F is a family of functions we say that a function μ_0 is the smallest in the family F whenever

$$\mu_{\scriptscriptstyle 0} \in F ext{ and } \mu_{\scriptscriptstyle 0} \subset \mu ext{ for all } \mu \in F.$$

Theorem 3. Let v be an upper complete volume on V and let $\mu_0 = pv$. Then μ_0 is the smallest measure being an extension of the volume v.

Theorem 4. Let v be an upper complete volume on V and let $\mu_0 = pv$. Then μ_0 is the smallest measure μ such that its finite part is the volume v, that is such that $t\mu = v$.

Let *i* be the operator mapping a complete measure μ into the complete integral seminorm $J=i\mu$ defined as in [12].

Theorem 5. Let J be a complete integral seminorm and v=gJthe corresponding complete volume. Then $\mu_0 = pv$ is the smallest complete measure generating J, that is the smallest complete measure μ such that $J=i\mu$.

We say that a measure μ on a sigma-ring M is sigma-finite if for every set $A \in M$ there exists a sequence of sets $A_n \in M$ such that

$$A = \bigcup_n A_n$$
 and $\mu(A_n) < \infty$.

Theorem 6. Let v be an upper complete volume. Then $\mu = pv$ if and only if μ is a sigma-finite measure such that $v = t\mu$.

We have noticed that a measure μ is complete if and only if the volume $v=t\mu$ is complete. From the proven theorems we see that the relations $\mu=pv$ and $J=i\mu$ establish 1-1 correspondence between the following: any complete volume v, any complete sigmafinite measure μ , and any complete integral seminorm.

§ 2. Extensions of volumes to measures and relations between the integral seminorms generated by them.

If v is a volume then its completion is defined by $v_s = g(i(v))$, that is

$$v_{\mathfrak{o}}(A) = \int \chi_A \ dv \ ext{ for } A \in V_{\mathfrak{o}}$$

where

No. 4]

$$V_c = \{A \subset X : \chi_A \in L(v, R)\}.$$

The volume v_o can be characterized as the *smallest complete* volume being an extension of the volume v according to Theorem 1, §1, [8] and Theorem 5, §2, [9].

Theorem 1. Let v be a volume and $\mu_0 = pv_o$. Then μ_0 is the smallest complete measure being an extension of the volume v.

Let μ be a measure on a sigma-ring M. Denote by N_{μ} the family of null sets generated by this measure. A set A belongs to this family if and only if there exists a set $B \in M$ such that $A \subset B$ and $\mu(B) = 0$.

Denote by $M_{\mathfrak{o}}$ the family of all sets $A = B \div C$, where $B \in M$ and $C \in N_{\mu}$, and put $\mu_{\mathfrak{o}}(A) = \mu(B)$. We remind the reader that the symmetric difference operation is defined by the formula $B \div C = (B \setminus C) \cup (C \setminus B)$. Any ring of sets with the symmetric difference operation forms a group.

The function μ_o is a measure called the Lebesgue extension of the measure μ . (See [14], [15]). This measure will be called the completion of the measure μ .

Theorem 2. If μ is a measure on a sigma-ring M then the family M_o is a sigma-ring and the completion μ_o of μ considered on M_o is the smallest complete measure being an extension of the measure μ .

Theorem 3. Let μ be a measure and v its finite part, that is the function v represents the restriction of the measure μ to the family $V = \{A \in M : \mu(A) < \infty\}$, mhere M denotes the sigma-ring being the domain of the measure μ . Then the finite part of the measure μ_e coincides mith the completion v_e of the volume v.

Denote by t the operator mapping a measure μ into its finite part $v=t\mu$.

Theorem 4. Let v be a volume on a prering V and $\mu_0 = pv_o$. Let M_0 be the sigma-ring being the domain of the measure μ_0 . If M is a sigma-ring such that $V \subset M \subset M_0$, then there exists unique measure μ being an extension of the volume v from the prering V onto the sigma-ring M.

The measure is given by the formula

 $\mu(A) = \mu_0(A)$ for all $A \in M$.

Moreover we have $\mu_{c} = \mu_{0}$.

Let E be a family of sets of a space X. Assume that F is the family of all σ -rings M containing E.

Notice that the intersection

$$M_1 = \cap M(M \in F)$$

is a sigma-ring. Since

 $M_1 \subset M$ for all $M \in F$

therefore M_1 is the smallest sigma-ring containing E. We shall say that M_1 is generated by E and we shall write $M_1 = \sigma$ -ring (E).

Let V be a prering and v be a volume on it. Put $M=\sigma$ -ring (V). We see that $M \subset M_0$, where M_0 is the domain of the measure $\mu_0 = pv_c$. According to Theorem 4 there exists a unique measure μ on M such that $v \subset \mu$.

Theorem 5. Let v be a volume on a prering V, $M = \sigma$ -ring (V), and μ the measure on M being an extension of the volume v. Then μ is the smallest measure being an extension of the volume v. We also have $\mu_c = \mu_0$ where $\mu_0 = pv_c$.

Theorem 6. Let v be a volume and μ the smallest measure being an extension of the volume v. Then $w = t\mu$ is the smallest upper complete volume being an extension of the volume v.

Let v be a volume on a prering V. Denote by S the family of all sets of the from $A = \bigcup_{n} A_{n}$ where A_{n} is a finite family of sets from the prering.

Denote by S_{δ} the family of all sets of the form $A = \bigcap_{n} A_{n}$ corresponding to all sequences $A_{n} \in S$.

Let $S_{\delta\sigma}$ be the family of all sets of the form $A = \bigcup_n A_n$ corresponding to all sequences $A_n \in S_{\delta}$.

Let N_v denote as usual the family of null sets generated by the volume v (see [1]).

Denote by M_v the family of all sets of the form $A = B \div C$, where $B \in S_{\delta\sigma}$ and $C \in N_v$.

In [5], §3 we have proven that the family M_v is a sigma-ring and that the volume v has a unique extension to a measure μ_v on M_v . This measure μ_v is complete according to Theorem 4-(5), §3, [5].

Theorem 7. Let v be a volume. Then the measure μ_v being an extension of the volume v from the prering V onto the sigmaring M_v is the smallest complete measure η such that $v \subset \eta$.

Theorem 8. Let v be a volume and μ the smallest measure being an extension of the volume v. Then the integral seminorm generated by the volume v coincides with the integral seminorm generated by the completion μ_c of the measure μ , that is $J=iv=i\mu_c$.

References

- [1] Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration. Proc. Nat. Acad. Sci., U.S.A., 53, 492-498 (1965).
- [2] —: Integral representations of linear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space. Proc. Nat. Acad. Sci., U.S.A., 54, 351-354 (1965).

W. M. BOGDANOWICZ

- [3] Bogdanowicz, W. M.: Integral representations of multilinear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space, to appear in Trans Amer. Math. Soc., for announcement of the results see Bull. Amer. Math. Soc., 72, 317-321 (1966).
- [4] —: Fubini Theorems for generalized Lebesgue-Bochner-Stieltjes integral, to appear in Trans. Amer. Math. Soc., for announcement of the results see Proc. Japan Acad., 42 (1966) (supplement to 41, 979-983 (1965)).
- [5] ——: An approach to the theory of Lebesgue-Bochner measurable functions and to the theory of measure. Mathem. Annalen, **164**, 251–270 (1966).
- [6] —: An approach to the theory of integration and to the theory of Lebesgue-Bochner measurable functions on locally compact spaces. Mathem. Annalen (to appear).
- [7] —:: An approach to the theory of integration generated by positive functionals and integral representations of linear continuous functions on the space of vector valued continuous functions. Mathem. Annalen (to appear).
- [8] ——: Existence and uniqueness of extensions of volumes and the operation of completion of a volume. I. Proc. Japan Acad., 42, 571-576 (1966).
- [9] On volumes generating the same Lebesgue-Bochner integration. Proc. Nat. Acad. Sci., U.S.A., 56, 1399-1405 (1966).
- [10] —: Vectorial integration and extensions of vector-valued set functions to measures (to appear).
- [11] ——: Remarks on Lebesgue-Bochner integration. Vectorial integration generated by complete integral seminorms (to appear).
- [12] —: Relations between complete integral seminorms and complete volumes, Proc. Japan Acad. (to appear).
- [13] Bourbaki, N.: Integration, Actual. Scient. et Ind., Chap. I-IV, No. 1175 (1952); Chap. V, No. 1244 (1956); Chap. VI No. 1281 (1959).
- [14] Halmos, P. R.: Measure Theory, D. Van Nostrand Co., Inc. New York (1950).
- [15] Dunford, N., and Schwartz, J.: Linear Operators, Vol. I. Interscience (1958).