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Introduction. A function v defined on a family V of sets of
a space X is called a wvolume if the following two conditions are
satisfied:

(1) The family V is a prering, that is the family is non-empty
and if A, Be V then ANBe V and

A\B=C,U---UC,,
where C; e V are disjoint sets.

(2) The function v is non-negative, finite-valued, and countably
additive on the prering V.

A volume v is called upper complete if the condition 4,e V and
S v(A,)<oo implies A=U,4,e V. If in addition the condition A
CBe V and v(B)=90 implies Ae V, then the volume v» is called
complete.

In §1 we investigate upper complete volumes. The main result
of the section is that upper complete volumes are in 1-1 correspond-
ence with J-finite measures. In this section we also establish the
existence of minimal extensions of upper complete volumes to meas-
ures.

In §2 we prove that for every volume v there exists the smal-
lest complete measure being an extension of the volume v. This
result permits us to prove the classical theorem on extension of
volumes. Namely if v is a volume on a prering V and M is the
smallest o-ring containing V, then there exists one and only one
measure /¢ on M being an extension of the volume v». It is estab-
lished that the completion of the measure p, yields the smallest
complete measure being an extension of the volume v.

It is also established that for every volume v there exists the
smallest upper complete volume being an extension of the volume
v. The existence of the smallest complete volume satisfying this
condition was established in [97].

§ 1. Relations between upper complete volumes and measures.

Theorem 1. Let v be an upper complete volume on V and let
M, be the family of all sets of the form A=U;, A, A, e V. Then
the family M, is a sigma-ring.

Theorem 2. Let v be an upper complete volume on V and let
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M, be the sigma-ring
M,={A: A=U, A, A, eV}
There exists one and only one measure p, on M, being an extension
of the volume v. The measure is given by the formula
Ho(A)=sup{v(B): BC A, Be V} for all Ae M,.

Denote by p the operator mapping an upper complete volume v
into the measure p, defined in Theorem 2.

If p,7n are two functions then the order relation »c ¢ will mean
that the function g is an extension of the function 7.

If F is a family of functions we say that a function p, is the
smallest in the family F' whenever

Mo F and p,cpe for all pe F.

Theorem 3. Let v be an upper complete volume on V and let
to=pv. Then p, is the smallest measure being an extension of the
volume v.

Theorem 4. Let v be an upper complete volume on V and let
to=pv. Then p, is the smallest measure p such that its finite
part is the volume v, that is such that tp=w.

Let 7 be the operator mapping a complete measure g into the
complete integral seminorm J=14u defined as in [12].

Theorem 5. Let J be a complete integral seminorm and v=gJ
the corresponding complete volume. Then p,=pv is the smallest
complete measure generating J, that is the smallest complete meas-
ure p such that J=apt.

We say that a measure p on a sigma-ring M is sigma-finite if
for every set Ae M there exists a sequence of sets A4,e M such
that

A=U,4, and p(A4,)<oo.

Theorem 6. Let v be an upper complete volume. Then p=pv
if and only if p is a sigma-finite measure such that v=tp.

We have noticed that a measure g is complete if and only if
the volume v=ty is complete. From the proven theorems we see
that the relations g=pv and J=7p establish 1-1 correspondence be-
tween the following: any complete velume v, any complete sigma-
finite measure p, and any complete integral seminorm.

§ 2. Extensions of volumes to measures and relations be-
tween the integral seminorms generated by them.

If v is a volume then its completion is defined by v,=g(i(v)),
that is

v,(A)= SXA dv for AecV,
where
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V.={Ac X :y,€ L(v, R)}.

The volume v, can be characterized as the smallest complete
volume being an extension of the volume v according to Theorem 1,
§1, [8] and Theorem 5, §2, [9].

Theorem 1. Let v be a volume and p, = pv,. Then , s the
smallest complete measure being an extension of the volume v.

Let z¢ be a measure on a sigma-ring M. Denote by N, the
family of null sets generated by this measure. A set A belongs to
this family if and only if there exists a set Be M such that ACB
and p(B)=0.

Denote by M, the family of all sets A=B-C, where Be M and
Ce N,, and put p,(A)=p(B). We remind the reader that the sym-
metric difference operation is defined by the formula B-~C=(B\C)U
(C\B). Any ring of sets with the symmetric difference operation
forms a group.

The function g, is a measure called the Lebesgue extension of
the measure yp. (See [14], [15]). This measure will be called the
completion of the measure p.

Theorem 2. If p ts a measure on a sigma-ring M then the
family M, is a sigma-ring and the completion p, of p considered
on M, 1s the smallest complete measure being an extension of the
measure [t.

Theorem 3. Let pt be a measure and v its finite part, that is
the function v represents the restriction of the measure p to the
family V={Ae M : p(A)< oo}, mhere M denotes the sigma-ring being
the domain of the measure pt. Then the finite part of the measure
1. coincides mith the completion v, of the volume v.

Denote by t the operator mapping a measure p into its finite
part v=tpy.

Theorem 4. Let v be a volume on a prering V and p, = pv,.
Let M, be the sigma-ring being the domain of the measure p,. If
M is a sigma-ring such that VcMc M, then there exists umnique
measure [t being an extension of the volume v from the prering V
onto the sigma-ring M.

The measure is given by the formula

H(A)=p(A) for all Aec M.
Moreover we have p,= pt,.

Let E be a family of sets of a space X. Assume that F' is the
family of all o-rings M containing E.

Notice that the intersection

Mi=NM(MeF)
is a sigma-ring. Since
M,cM for all Me F
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therefore M, is the smallest sigma-ring containing E. We shall
say that M, is generated by E and we shall write M,=0-ring ().

Let V be a prering and v be a volume on it. Put M=oc-ring
(V). We see that Mc M,, where M, is the domain of the measure
Mo = pv,. According to Theorem 4 there exists a unique measure g
on M such that vcp.

Theorem 5. Let v be a volume on a prering V, M=o-ring (V),
and p the measuwre on M being an extension of the volume v. Then
p is the smallest measure being an extension of the volume v. We
also have p,=p, where p,=pv,.

Theorem 6. Let v be a volume and p the smallest measure
being an extension of the volume v. Then w=tp is the smallest
upper complete volume being an extension of the volume v.

Let v be a volume on a prering V. Denote by S the family of
all sets of the from A= ,A4, where A, is a finite family of sets
from the prering.

Denote by S; the family of all sets of the form A= ,4, cor-
responding to all sequences 4, ¢ S.

Let S;, be the family of all sets of the form A= J,A, corre-
sponding to all sequences A, € S;.

Let N, denote as usual the family of null sets generated by the
volume v (see [1]).

Denote by M, the family of all sets of the form A=B-+C, where
BeS;, and Ce N,.

In [5], §3 we have proven that the family M, is a sigma-ring
and that the volume v has a unique extension to a measure p, on
M,. This measure p, is complete according to Theorem 4-(5), § 3,
[5].

Theorem 7. Let v be a volume. Then the measure p, being
an extension of the volume v from the prering V onto the sigma-
ring M, is the smallest complete measure 1y such that vcy.

Theorem 8. Let v be a volume and p the smallest measure
being an extension of the volume v. Then the integral seminorm
generated by the volume v coincides with the integral seminorm
generated by the completion . of the measure p, that is J=iv=1ip,.
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