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Introduction. A function v defined on a family V of sets of
a space X is called a volume if the following two conditions are
satisfied:

( 1 The family V is a prering, that is the family is non-empty
and if A, Be V then AB V and

A\B CU U C,
where C. e V are disjoint sets.

2 The function v is non-negative, finite-valued, and countably
additive on the prering V.

A volume v is called upper complete if the condition A e V and
v(A)oo implies A= UA e V. If in addition the condition A

cBe V and v(B)=0 implies Ae V, then the volume v is called
complete.

In 1 we investigate upper complete volumes. The main result
of the section is that upper complete volumes are in 1-1 correspond-
ence with -finite measures. In this section we also establish the
existence of minimal extensions of upper complete volumes to meas-
ures.

In 2 we prove that for every volume v there exists the smal-
lest complete measure being an extension of the volume v. This
result permits us to prove the classical theorem on extension of
volumes. Namely if v is a volume on a prering V and M is the
smallest a-ring containing V, then there exists one and only one
measure ,u on M being an extension of the volume v. It is estab-
lished that the completion of the measure Z yields the smalles
complete measure being an extension of the volume v.

It is also established that for every volume v there exists the
smalles upper complete volume being an extension of the volume
v. The existence of the smallest complete volume satisfying this
condition was established in 9.

1. Relations between upper complete volumes and measures.
Theorem 1. Let v be an uppe" complete volume on V and let

Mo be the family of all sets of the form A (J =1A, A e V. Then
the family Mo is a sigma-ring.

Theorem 2. Let v be an upper complete volume on V and let
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Mo be the sigma-ring

M0={A:A= 7__A, A e V}.
There exists one and only one measure [o on Mo being an extension
of the volume v. The measure is given by the formula

0(A) sup{v(B) B A, B V} for all A e Mo.
Denote by p the operator mapping an upper complete volume v

into the measure /0 defined in Theorem 2.
If /, ] are two functions then the order relation ]/ will mean

that the function ,a is an extension of the function ].
If F is a family of functions we say that a function 0 is the

smallest in the family F whenever
/0 F and /0/ for all / e F.

Theorem 3. Let v be an upper complete volume on V and let
to=pV. Then [o is the smallest measure being an extension of the
volume v.

Theorem 4. Let v be an upper com.plete volume on V and let
[o=pV. Then [o is the smallest measure such that its finite
part is the volume v, that is such that tl-v.

Let i be the operator mapping a complete measure / into the
complete integral seminorm J=iv defined as in 12.

Theorem 5. Let J be a complete integral seminorm and v=gJ
the corresponding complete volume. Then [o=pV is the smallest
complete measure generating J, that is the smallest complete meas-
ure [ such that J=i[.

We say that a measure / on a sigma-ring M is sigma-finite if
for every set Ae M there exists a sequence of sets AeM such
that

A= [JA and /(A)c.
Theorem 6. Let v be an upper complete wlume. Then [ pv

if and only if [ is a sigma-finite measure such that v=t[.
We have noticed that a measure / is complete if and only if

the volume v=tl is complete. From the proven theorems we see
that the relations [=pv and J=i[ establish 1-1 correspondence be-
tween the following: any complete volume v, any complete sigma-

finite measure l, and any complete integral seminorm.
2. Extensions of volumes to measures and relations be-

tween the integral seminorms generated by them.
If v is a volume then its e0mpletion is defined by vo=g(i(v)),

that is

vo(A)-f dv for A e V
where
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Vo-{A X: e L(v, R)}.
The volume vo can be characterized as the smallest complete

volume being an extension of the volume v according to Theorem 1,
1, 8 and Theorem 5, 2, 9.

Theorem 1. Let v be a volume and [2o- pro. Then [2o is the
smallest complete measure being an extension of the volume v.

Let /2 be a measure on a sigma-ring M. Denote by N, the
family of null sets generated by this measure. A set A belongs to
this family if and only if there exists a set B e M such that AB
and (B) 0.

Denote by Mo the family of all sets A=B/C, where B e M and
C N,, and put [2o(A)--lf(B). We remind the reader that the sym-
metric difference operation is defined by the formula B/C (B\C)
(C\B). Any ring of ses with the symmetric diffevence opevaion
forms a group.

The function o is a measure called the Lebesgue extension of
the measure /2. (See 142, 15). This measure will be called the
completion of the measure /2.

Theorem 2. If [ is a measure on a sigma-ring M then the
family Mo is a sigma-ring and the completion to of l considered
on Mo is the smallest complete measure being an extension of the
measure [.

Theorem :. Let [ be a measure and v its finite part, that is
the function v represents the restriction of the measure l to the
family V= {A e M: t(A) }, inhere M denotes the sigma-ring being
the domain of the measure [. Then the finite part of the measure

[o coincides mith the completion v, of the volume v.
Denote by t the operator mapping a measure l into its finite

part v tt.
Theorem 4. Let v be a volume on a prering V and [o pv.

Let Mo be the sigma-ring being the domain of the measure [o. If
M is a sigma-ring such that VMMo, then there exists unique
measure [ being an extension of the volume v from the prering V
onto the sigma-ring M.

The measure is given by the formula
/(A) =/0(A) for all A e M.

Moreover we have o=0.
Let E be a family of sets of a space X. Assume that F is the

family of all a-rings M containing E.
Notice that the intersection

M= M(M e F)
is a sigma-ring. Since

M M for all M e F
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therefore M is the smallest sigma-ring containing E. We shall
say that M is generated by E and we shall write M=a-ring (E).

Let V be a prering and v be a volume on it. Put M=a-ring
(V). We see that MMo, where M0 is the domain of the measure

to pro. According to Theorem 4 there exists a unique measure /
on M such that v/.

Theorem 5. Let v be a volume on a prering V, M=a-ring (V),
and [ the measure on M being an extension of the volume v. Then
t is the smallest measure being an extension of the volume v. We
also have c=0 where o=pVc.

Theorem 6. Let v be a volume and [ the smallest measure
being an extension of the volume v. Then w-t[ is the smallest
upper complete volume being an extension of the volume v.

Let v be a volume on a prering V. Denote by S the family of
all sets of the from A= JA. where A. is a finite family of sets
from the prering.

Denote by S the family of all sets of the form A-A cor-
responding to all sequences A e S.

Let S be the family of all sets of the form A=A corre-
sponding to all sequences A e S.

Let N denote as usual the family of null sets generated by the
volume v (see 1).

Denote by M the family of all sets of the form A B/C, where
BeS and CeNt.

In 5, . 3 we have proven that the family M is a sigma-ring
and that the volume v has a unique extension to a measure / on
M. This measure / is complete according to Theorem 4-(5), 3,
[55.

Theorem 7. Let v be a volume. Then the measure t being
an extension of the volume v from the prering V onto the sigma-
ring M is the smallest complete measure ] such that v.

Theorem 8. Let v be a volume and [ the smallest measure
being an extension of the volume v. Then the integral seminorm
generated by the volume v coincides with the integral seminorm
generated by the completion [ of the measure t, that is J=iv=i[.
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