106. On Normal Analytic Sets

By Ikuo Kimura

Kōbe University
(Comm. by Kinjirô Kunugi, m.J.A., June 12, 1967)
In this paper, we shall show that an irreducible analytic set at a point is always described locally by a certain number of systems of Puiseux-series. And we shall present a theorem saying that an irreducible analytic set in a neighborhood of a point is normal if and only if such a group of systems of Puiseux-series satisfies the following conditions.
(1) Two systems of the group never pass through any common point.
(2) If the order of the series of a system belonging to the group exceeds 1, the second coefficient of a series of the system does not vanish identically.

We shall further give a theorem concerning the dimension of the set of non-normal points.

We suppose that the analytic sets are in the space of n complex variables and of d-dimension at the point we consider, where n surpasses 2 and d surpasses 1 -the reason of which is that, if $d=1$, all the circumstances reduce to a very clear situation and our results subsist without any alteration.

1. Representation by systems of Puiseux-series. We work in the space of n variables $x_{1}, \cdots, x_{n}(n>2)$. Let \sum be an analytic set in an open set containing a point A; we suppose that \sum is irreducible at A. For brevity, we assume that A is the origin. Then by the local description theorem, ${ }^{11}$ if we choose a proper system of coordinates, there exist a polydisc

$$
C:\left|x_{i}\right|<r_{i}, 1 \leqslant i \leqslant n,
$$

with arbitrarily small radii r_{i}, a distinguished pseudo-polynomial of degree an integer N in x_{d+1} :

$$
P\left(x_{1}, \cdots, x_{d+1}\right)=x_{d+1}^{N}+a_{1}\left(x_{1}, \cdots, x_{d}\right) x_{d+1}^{N-1}+\cdots+a_{N}\left(x_{1}, \cdots, x_{d}\right)
$$

and, for each $i, d+1<i \leqslant n$, a pseudo-polynomial of degree $\leqslant N-1$ in x_{d+1} :

$$
Q_{i}\left(x_{1}, \cdots, x_{d+1}\right)=b_{1}^{(i)}\left(x_{1}, \cdots, x_{d}\right) x_{d+1}^{N-1}+\cdots+b_{N}^{(i)}\left(x_{1}, \cdots, x_{d}\right),
$$

such that they together satisfy the following conditions.
(1) The coefficients $a_{j}\left(x_{1}, \cdots, x_{d}\right), b_{j}^{(i)}\left(x_{1}, \cdots, x_{d}\right)$ of P, Q_{i} are holomorphic in the polydisc

[^0]$$
\Gamma:\left|x_{i}\right|<r_{i}, 1 \leqslant i \leqslant d,
$$
and, but for the leading coefficient of P, vanish at the origin.
(2) $P\left(x_{1}, \cdots, x_{d+1}\right)$ is irreducible at the origin.
(3) For each point $\left(x_{1}, \cdots, x_{d}\right) \in \Gamma$, all the N roots x_{d+1} of the equation $P=0$ lie in the disc $\left|x_{d+1}\right|<r_{d+1}$.
(4) Let $D\left(x_{1}, \cdots, x_{d}\right)$ be the discriminant of P. Then the set of the points belonging to Σ and satisfying $D\left(x_{1}, \cdots, x_{d}\right) \neq 0$, is represented in C, by the conditions:
\[

$$
\begin{gathered}
\left(x_{1}, \cdots, x_{d}\right) \in \Gamma, D\left(x_{1}, \cdots, x_{d}\right) \neq 0, P\left(x_{1}, \cdots, x_{d+1}\right)=0, \\
x_{i}=\frac{Q_{i}\left(x_{1}, \cdots, x_{d+1}\right)}{\partial P\left(x_{1}, \cdots, x_{d+1}\right) / \partial x_{d+1}}, d+1<i \leqslant n .
\end{gathered}
$$
\]

Moreover, we have to be observant on the fact that this local expression is also possible, if we do a linear regular transformation of the coordinates x_{1}, \cdots, x_{d}, or even if we do a linear and sufficiently small transformation of the coordinates x_{d+1}, \cdots, x_{n}. Consequently we may assume, without loss of generality, that we have

$$
D\left(x_{1}, \cdots, x_{d}\right)=E\left(x_{1} \cdots, x_{d}\right) W\left(x_{1}, \cdots, x_{d}\right),
$$

where E is a holomorphic and non-zero function in a neighborhood of the origin, and W a distinguished pseudo-polynomial in x_{d} :

$$
W\left(x_{1}, \cdots, x_{d}\right)=x_{d}^{M}+c_{1}\left(x_{1}, \cdots, x_{d-1}\right) x_{d}^{M-1}+\cdots+c_{M}\left(x_{1}, \cdots, x_{d-1}\right) .
$$

Let

$$
W\left(x_{1}, \cdots, x_{d}\right)=f_{1}\left(x_{1}, \cdots, x_{d}\right)^{q_{1}} \cdots f_{s}\left(x_{1}, \cdots, x_{d}\right)^{q_{s}} ;
$$

be the decomposition of W into distinguished irreducible factors at the origin. Let

$$
f\left(x_{1}, \cdots, x_{d}\right)=f_{1}\left(x_{1}, \cdots, x_{d}\right) \cdots f_{s}\left(x_{1}, \cdots, x_{d}\right)
$$

then f is a distinguished pseudo-polynomial in x_{d} :

$$
f\left(x_{1}, \cdots, x_{d}\right)=x_{d}^{L}+h_{1}\left(x_{1}, \cdots, x_{d-1}\right) x_{d}^{L-1}+\cdots+h_{L}\left(x_{1}, \cdots, x_{d-1}\right),
$$

where h_{i} are holomorphic and zero at the origin. Taking C small enough, we may add to the above theorem following two conditions.
(5) $E\left(x_{1}, \cdots, x_{d}\right)$ is holomorphic and non-zero in Γ. The $h_{i}\left(x_{1}, \cdots, x_{d-1}\right)$ are holomorphic in the polydisc

$$
\gamma:\left|x_{i}\right|<r_{i}, 1 \leqslant i<d .
$$

(6) The relations $\left(x_{1}, \cdots, x_{d-1}\right) \in \gamma, f\left(x_{1}, \cdots, x_{d}\right)=0$ induce $\left(x_{1}, \cdots, x_{d}\right) \in \Gamma$.

These six assumptions for \sum explained above are not disturbed, if we do a small linear change of the coordinates x_{d+1}, \cdots, x_{n}. In the following, we discuss mainly the case $L \geqslant 1$, because, if $f=1$, we see that our results subsist under the same form.

Finally we explain the notations employed in this paper.
(a) Let $k=d-1, e=n-d$.
(b) The variables $x_{d}, x_{d+1}, \cdots, x_{n}$ are denoted by y, z_{1}, \cdots, z_{e}, respectively.
(c) The points $\left(x_{1}, \cdots, x_{k}\right),\left(x_{1}, \cdots, x_{k}, y\right),\left(x_{1}, \cdots, x_{k}, y, z_{1}, \cdots, z_{e}\right)$ are denoted by $x,(x, y),(x, y, z)$, respectively.
(d) The origin of a space of arbitrary number of variables is denoted simply by the zero 0 .

Let give an analytical expression for \sum in the neighborhood of the variety $f(x, y)=0$. Let x^{0} be a point in γ, at which $\delta(x)$ does not vanish. Then the equation $f\left(x^{0}, y\right)=0$ has L simple zeros: let y^{0} be one of them. At that time, the equation $f(x, y)=0$ has a unique solution $y=\varphi(x)$ holomorphic in a neighborhood of x^{0} and such that $y^{0}=\varphi\left(x^{0}\right)$. Consequently, in a neighborhood of $\left(x^{0}, y^{0}\right)$, the solutions of the equation $P\left(x, y, z_{1}\right)=0$ are represented by a certain number κ of Puiseux-series:

$$
z_{1}=z_{1}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i)}(x)(y-\varphi(x))^{\frac{\nu}{p_{i}}}, 1 \leqslant i \leqslant \kappa,
$$

where $c_{\nu}^{(i)}(x)$ are holomorphic in a neighborhood of x^{0}. Putting the expressions above into the formulas given in (4), we see that the $z_{i}, 1<i \leqslant e$ are also represented by Puiseux-series.

Accordingly, we have a certain number κ of systems of Puiseuxseries:

$$
z_{\mu}=z_{\mu}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i, \mu)}(x)(y-\varphi(x))^{\frac{\nu}{p_{i}}}, 1 \leqslant \mu \leqslant e, 1 \leqslant i \leqslant \kappa,
$$

where $c_{\nu}^{(i, \mu)}(x)$ are holomorphic in a neighborhood of x^{0}; this group of systems of Puiseux-series describes \sum completely in a neighborhood of $\left(x^{0}, y^{0}\right)$.
2. A condition for local irreducibility. As to the local irreducibility of \sum, we have in the first place the following

Proposition 1. Let $\left(x^{0}, y^{0}, z^{0}\right)$ be a point on $\Sigma \cap C$. Then Σ is irreducible at $\left(x^{0}, y^{0}, z^{0}\right)$, if and only if $P\left(x, y, z_{1}\right)$ is irreducible at $\left(x^{0}, y^{0}, z_{1}^{0}\right)$.

Let $\left(x^{0}, y^{0}\right)$ be a point in Γ, satisfying $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$. Let

$$
\begin{equation*}
z_{\mu}=z_{\mu}^{(i)}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(i, \mu)}(x)(y-\varphi(x))^{\frac{\nu}{p_{i}}}, 1 \leqslant \mu \leqslant e, 1 \leqslant i \leqslant \kappa, \tag{1}
\end{equation*}
$$

be the systems of Puiseux-series representing Σ in a neighborhood of $\left(x^{0}, y^{0}\right)$. We consider the condition below.

Condition (α). If the point $\left(x^{0}, y^{0}\right)$ is sufficiently near 0 , then, for $i, j, i \neq j$, we have $c_{0}^{(i, 1)}(x) \neq c_{0}^{(j, 1)}(x)$ for the points x near x^{0}.

Remarks. (a) If $\left(x^{0}, y^{0}, z^{0}\right)$ is a point sufficiently near 0 such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$, and if \sum satisfies the condition (α), then there exists a unique system of (1) passing through the point (x^{0}, y^{0}, z^{0}) and therefore representing \sum completely in a neighborhood of (x^{0}, y^{0}, z^{0}). (b) The functions $c_{0}^{(i, 1)}(x)$ have the property that, if $c_{0}^{(i, 1)}(x) \not \equiv c_{0}^{(j, 1)}(x)$, we have $c_{0}^{(i, 1)}(x) \neq c_{0}^{(j, 1)}(x)$ for x near x^{0}, or equivalently that, if $c_{0}^{(i, 1)}(x)=c_{0}^{(j, 1)}(x)$ for a point x near x^{0}, we have necessarily
$c_{0}^{(i, 1)}(x) \equiv c_{0}^{(j, 1)}(x)$. This is a consequence of a lemma due to K. Oka. ${ }^{2)}$ We have the following
Proposition 2. \sum is locally irreducible at 0 , if and only if \sum satisfies the condition (α).
3. Conditions for normality. As a necessary condition for normality, we have the

Proposition 3. If \sum is normal at 0 , the set \sum satisfies the condition (α).

Now we consider an another condition:
Condition (β). Let $\left(x^{0}, y^{0}\right.$) be a point sufficiently near 0 , such that $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$. And let

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, 1 \leqslant \mu \leqslant e
$$

be a system of Puiseux-series, attached to the point (x^{0}, y^{0}), such that $p>1$; then we have $c_{1}^{(\mu)}(x) \not \equiv 0$ for an index $\mu, 1 \leqslant \mu \leqslant e$.

The above condition is also necessary for normality:
Proposition 4. If \sum is normal at 0, it must satisfy the condition (β).

Proof. Suppose that \sum is normal at 0 and that \sum does not satisfy the condition (β). Then there exist a point (x^{0}, y^{0}) near 0 , satisfying $\delta\left(x^{0}\right) \neq 0, f\left(x^{0}, y^{0}\right)=0$, and a system

$$
z_{\mu}=z_{\mu}(x, y)=\sum_{\nu=0}^{\infty} \mathrm{c}_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}, 1 \leqslant \mu \leqslant e
$$

such that $p>1$ and $c_{1}^{(\mu)}(x) \equiv 0,1 \leqslant \mu \leqslant e$.
Let $\nu_{0}, \nu_{0}>1$ be the first of the integers ν such that there is an index $\mu, 1 \leqslant \mu \leqslant e$, satisfying $c_{\nu}^{(\mu)}(x) \not \equiv 0$ and that ν is not divided by p. For simplicity, suppose that $c_{\nu_{0}}^{(1)}(x) \not \equiv 0$. Let τ, σ be the integers satisfying

$$
\nu_{0}=\tau p+\sigma, \tau \geqslant 0,0<\sigma<p .
$$

And, for each $\mu, 1 \leqslant \mu \leqslant e$, let

$$
G_{\mu}(x, y)=\sum_{\nu<\nu_{0}} c_{\nu}^{(\mu)}(x)(y-\varphi(x))^{\frac{\nu}{p}}
$$

Remark that the point $\left(x^{0}, y^{0}, z^{0}\right)\left(z_{\mu}^{0}=z_{\mu}\left(x^{0}, y^{0}\right)\right)$ is normal.
For example, suppose that $\tau>0$, and consider the function

$$
h=(y-\varphi(x))^{-\tau}\left(z_{1}-G_{1}(x, y)\right),
$$

which is holomorphic on \sum in a neighborhood of (x^{0}, y^{0}, z^{0}). We see that h is not expressible by any holomorphic function $H(x, y, z)$ in the space (x, y, z), and we have a contradiction. In fact, suppose that such a function H exists. Let

$$
H=\sum_{i_{1}, \cdots, i_{e}=0}^{\infty} b_{i_{1}} \cdots{ }_{i_{e}}(x, y)\left(z_{1}-G_{1}(x, y)\right)^{i_{1}} \cdots\left(z_{e}-G_{e}(x, y)\right)^{i_{e}}
$$

[^1]be the Taylor-series expansion of H. We have $b_{0} \ldots 0_{0}(x, \varphi(x))=0$, i.e., the quotient $b_{0} \ldots 0(x, y) /(y-\varphi(x))$ is bounded in a neighborhood of $\left(x^{0}, y^{0}\right)$. Further, for each $\mu, 1 \leqslant \mu \leqslant e,\left(z_{\mu}-G_{\mu}(x, y)\right) /(y-\varphi(x))$ is also bounded there, when $(x, y, z) \in \sum$. Consequently, the quotient $H /(y-\varphi(x))$ is bounded on \sum in a neighborhood of (x^{0}, y^{0}, z^{0}). But $h /(y-\varphi(x))$ is not bounded there, which shows that H cannot represent the function h.

In the case $\tau=0$, we arrive also at a contradiction, if we take the function

$$
h=(y-\varphi(x))^{-\frac{1}{p}}\left(z_{1}-G_{1}(x, y)\right) .
$$

Proposition 5. If \sum satisfies the conditions (α) and (β), it is normal at 0 .

Proof. First suppose that \sum is principal. Then Σ is defined by the single equation $P=0$. Let $\left(x^{0}, y^{0}, z_{1}^{0}\right)$ be a point on \sum, such that x^{0} is near 0 and that $\delta\left(x^{0}\right) \neq 0$. If $f\left(x^{0}, y^{0}\right) \neq 0$, the point $\left(x^{0}, y^{0}, z_{1}^{0}\right)$ is regular and then normal. If $f\left(x^{0}, y^{0}\right)=0$, there exists a unique Puiseux-series

$$
z_{1}=\sum_{\nu=0}^{\infty} c_{\nu}(x)(y-\varphi(x))^{\frac{\nu}{p}},
$$

which represents \sum completely in a neighborhood of $\left(x^{0}, y^{0}, z_{1}^{0}\right)$. If $p>1$, then, according to the condition (β), we have $c_{1}(x) \not \equiv 0$. In a neighborhood of (x^{0}, y^{0}, z_{1}^{0}), the analytic set $\sum_{0}: c_{1}(x)=0, y=\varphi(x)$, $z_{1}=c_{0}(x)$, includes completely the set of all non-normal points of \sum. By the lemma due to K. Oka we have referred to, we know that (x^{0}, y^{0}, z_{1}^{0}) is normal, because we have $\operatorname{dim} . \sum=\operatorname{dim} . \sum_{0}+2$.

Let $\left(x^{0}, y^{0}, z_{1}^{0}\right)$ be a point of \sum such that x^{0} is near 0 and that $\delta\left(x^{0}\right)=0, f\left(x^{0}, y^{0}\right) \neq 0$. Then $\left(x^{0}, y^{0}, z_{1}^{0}\right)$ is normal, for it is regular. Consequently, in a neighborhood of 0 , the set $\sum_{0}^{\prime}: P\left(x, y, z_{1}\right)=f(x, y)$ $=\delta(x)=0$, includes the set of all non-normal points. By the same reason as above, we see that 0 is normal.

In the case where Σ is not principal, doing a small linear change of the variables z_{1}, \cdots, z_{e}, and looking over the irreducible principal analytic set in the space $\left(x, y, z_{1}\right)$, obtained by \sum, we are also able to arrive at the conclusion.

By the propositions $3,4,5$, we have the
Theorem 1. \sum is normal, if and only if it satisfies the conditions (α) and (β).

By the above theorem and the remark (b), we obtain the
Theorem 2. The set of all non-normal points of \sum is empty or purely ($d-1$)-dimensional, where $d=\operatorname{dim} . \Sigma$.

[^0]: 1) M. Hervé: Several Complex Variables, Tata Institute of Fundamental Research, Bombay, Oxford University Press, 1963.
[^1]: 2) See K. Oka: Sur les fonctions analytiques de plusieurs variables (Iwanami Shoten, Japan, 1961), especially p. 139, Lemme 1.
