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Introduction. The Betti numbers of compact Kihlerian mani-
folds were studied by many geometers. Especially the second Betti
numbers of compact Khlerian manifolds were studied by M. Berger
1, R.L. Bishop and S. I. Goldberg 2 and others. It is natural
to research these problems in compact Sasakian manifolds, and in
fact, they were studied by S.I. Goldberg 5, S. Tachibana _7, S.
Tachibana and Y. Ogawa _8 and S. Tanno 10, etc.

1. In 10 we have used (m-1)-homothetic deformations to get
results of the first Betti numbers. We call these deformations D-
homothetic deformations, where D denotes the distribution defined
by a contact form r]. To get results of the second Betti numbers
and harmonic forms, we also utilize a D-homothetic deformation:

(1.1) g--*g g/ (or- or) r] @ r]
of the associated Riemannian metric g for a positive constant
Then if (, , r], g) is a Sasakian structure for a contact form r], then
(’0=0, * =r-x, *r]=r], *g) is also a Sasakian structure. By studying
the relations of harmonic forms with respect to g and *g, we get

Theorem 1. A compact m-dimensional Sasakian manifold M
with sectional curvature >-3/(m-2) has the first Betti number
bl(M) O. If m 3, we have also b.(M) O.

A harmonic 2-form w is called of the hybrid type (pure type,
resp.) if it satisfies
(1.2) w(OX, Y) w(X, Y) (= w(X, Y), resp.)
for any vector fields X and Y on M.

Theorem 2. If m>5, a compact Sasakian manifold M with
sectional curvature >- 3/(m-2) has no harmonic 2-form of the pure
type. And if sectional curvature >0, there is no harmonic 2-form
of the hybrid type. Especially, then, we have b.(M)=0.

Remark. Under the additional condition that is regular, S.I.
Goldberg [5] obtained the last half of Theorem 2. In K/hlerian
case the similar fact was obtained by R. L. Bishop and S. I. Goldberg

2. We denote by K(X, Y) the sectional curvature for 2-plane
determined by X and Y. As is well known in KKhlerian manifolds
holomorphic pinchings were studied by several authers. In Sasakian
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manifolds, we want to define certain pinching for -holomorphic
sectional curvatures. One of the conspicuous properties of Sasakian
manifolds is that the sectional curvature for 2-plane which contains

is equal to 1. So when we normalize the metric we want to pre-
serve this property, this is why we consider a D-homothetic defor-
mation as a normalization. Namely we say that M is *2-holomor-
phically pinched if the following relation is satisfied
(2.2) *<_*K(X, *X)_< 1
for any X in D, x e M.

Theorem . If a compact Sasakian manifold M is *2-holomor-
phically pinched with * 1, then b(M)- O.

Theorem 4. If a Sasakian manifold is *2-holomorphically
pinched with *1/4, then it is of strictly positive curvature with
respect to *g. Further if "2-1/3, then we have the second D-
homothetic deformation .g_Og so that M is of strictly positive
curvature with respect to Og.

Theorem 5. If a Sasakian manifold M is *2-holomorphically
pinched with *17/35, then M is Riemannian *-pinched with
*1/4. Further if "21/5, then by the second D-homothetic

deformation .g._+Og, M is Riemannian -pinched with 51/4.
Thus if M is complete and simply connected M is homeomorphic
to a sphere.

3. From these theorems we can derive applications. For ex-
ample, we have

Theorem 6. If a complete, simply connected Sasakian manifold
M is *2-holomorphically pinched with "2-1/3 and if the scalar
curvature is constant, then M is globally D-homothetic to the unit
sphere.

To prove this Theorem we need the recent results obtained by
E.D. Moskal [6.

One of the other results is as follows:
Theorem 7. Let M be a 5-dimensional, simply connected,

compact Sasakian manifold with strictly positive curvature or *2-
holomorphically pinched with *-1. If the torsion part of the
integral second homology group of M vanishes, then M is diffeo-
morphic to a sphere.
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