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138. Closures and Neighborhoods in Certain
Proximity Spaces

By Eiichi HAYASHI
Nagoya Institute of Technology

(Comm. by Kinjir6 KUNUGI, .J.A., Sept. 12, 1967)

In the paper 1, we defined a binary relation 6, called a
paraproximity, for a pair of subsets of a point set R. We there
proved that a paraproximity yields a completely normal space (1
Theorem 1). Further we showed that, for a pair of subsets A and
B of a paraproximity space R, (A,B)e6 implies AB (1
Theorem 2). In the present paper we show that the converse of
Theorem 2 holds. Hence a paraproximity structure which is com-
patible with the topology is uniquely determined. The remaining
parts of this paper are devoted to the study of the neighborhood.

First we restate the definition of a paraproximity. By a
paraproximity on a set R we mean a binary relation for pairs of
subsets of R satisfying the following axioms"

Axiom (1). For every AR, (A, (R)) e 5, and ((R), A) e . (We add
the latter condition (, A) to Axiom (1) of 1].)

Axiom (2). (A,BC) e5 if and only if either (A,B) e or
(A,

Axiom (3). For an arbitrary index set /, (U eA, B)e if and
only if there exists an index / e / satisfying the relation (A,, B) e 5.

Axiom (4). For arbitrary two points a, b e R, ({a}, {b}) e 5 if and
only if a-b.

Axiom (5). If (A, B) e and (B, A) e , then there exist two
disjoint subsets U and V satisfying:

(A, R- U) e 5, (U, R- U) e "(B, R- V) + , (Y, R- V) e 5.
We note that the next lemma (Steiner [3)follows from Axiom

(3).
Lemma 1. (A, B) e if and only if ({x}, B) e for some x in A.
Lemma 2. If ({x}, A) then (A, {x}) .
Proof. If ({x}, A) e , then xe A by [1, Lemma 3. Suppose

that (A, {x})e 5. Then, by Lemma 1, there is a point a in A such
that ({a}, {x})e . From Axiom (4) follows a=x which is a contra-
diction.

1. Let R be a set with a paraproximity . A set BR is
said to be a paraproximal neighborhood of a set AR (notation:
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(i)
(2)

(4)
every

(5)
(6)

AB) if and only if (A,R-B)e . (cf. Y. M. Smirnov [2.)
Lemma 3. The relation satisfies the following conditions:

RR, .
ABCD implies AD.
AB, 1, 2, ..., n, if and only if A =B.
For any index set A, JeAB if and only if AB for

xR-y if and only if xy.
If AR-B and BR-A then there are two disjoint

subsets U and V such that UU, V V, AU, and B V.
Proof. (1) follows from Axiom (1). To prove (2), assume that

ABCD. Then (B, R-C) and hence from [1, Lemma 1 and
2 (A, R-D) , which implies AD. (3) is established by repeated
application of Axiom (2). If [J eA B, then by (2), A B for
every . The converse implication of (4) is obvious from Axiom
(3), (5), and (6) evidently follow from Axiom (4)and (5)respectively.

Theorem 1. Let a relation satisfying the conditions (1)--
(6) of Lemma 3, be defined on the family of subsets of R. Then, defined by (A, B)e if and nly is AcI:R-B, is a paraproximity
on R.

Proof. We must show that 5 as defined in terms of the relation, satisfies Axiom (1)--(5). For every AR, we have from Lemma
3 (1) and (2), that AR and hence (A, ) 5. Similarly we have
that (, A)5. Thus Axiom (1) holds. To prove Axiom (2), let
(A, B @ C) e . Then A 1:R- (B @ C) (R- B) (R- C). Assume, on
the contrary, that AR-B and AR-C. Then from Lemma 3
(3), we have that A(R- B) (R- C), which is impossible. There-
fore A<]:R-B or AI:R-C. This proves "only if" part of Axiom
(2). "if" part of Axiom (2) also follows from (3) in Lemma 3.
Axioms (3), (4), and (5) are derived from (4), (5), and (6) in Lemma
3 respectively.

Moreover, paraproximal neighborhoods have the following prop-
erties:

Theorem 2.

(1) AB implies A B.
(2) If AB, i 1, 2, n, then ( =lAi =B and U=A

J \IB.
(3) Let Abe a subset of R and x a point of R. Then xR-A

implies A R- x.
(4) For every point x, R- x R- x.
(5) AB implies the existence of a set UR such that

AUB and U U.
(6) AB implies the existence of sets U and VR such that
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AU VB, U U, and V V.
Proof. To prove (1), let AB. By definition, it follows that

(A,R-B) and so A(R-B)= from [1, Lemma3. We show
that (2)holds in the case of n=2. Let AB, that is, (A,R-B)
e,i=l, 2. Then by [1, Lemma 2, we have (AA.,R-B)
e 5(i 1, 2) and so (A A., R-(B B)) from Axiom (2). It
follows that A A.B B. Assume again that A B(i 1, 2).
Since (A, R-B) 5(i 1, 2), we have (A, R-(B B.)) 5 and (A,
R-(B [J B)) 5 and hence A @ AB@ B.. (3) and (4) are immediate
consequences of Lemma 2 and 1, Lemma 4, respectively.

To establish (5), assume that AB, that is, (A, R-B) 5.
From 1, Lemma 2, ({x},R-B) for every x in. A and hence
(R-B, {x}) by Lemma 2. On account of Axiom (5), there exist
two disjoint subsets U and V (x e A) such that x U, U U,
R-B_ V, and V V. Put U= [JeU. From Lemma 3(2) we
have xU since xUU for every xeA. Hence by Lemma 1,
(A,R-U) so that AU. Since UUU, from Lemma 3(2)
we have UU for every xeA. By Lemma 3(4), [JeUU and
hence UU. Further since U V= and R-BR-U for
every x e A, we have UB. Since U UB, it follows from Lemma
3 (2) that UB. Consequently U is the required set. (6)follows
from a twofold application of (5).

3. Let R be a set and 5 a paraproximity on R. For AR,
we set (.) c(A)= {x: x e R, ({x}, A) e }.

Lemma 4. Fr UcR, U U if and only if c(R- U)=R- U.
Proof. Suppose that U U i.e. (U, R- U) e 5. Then it follows

from 1, Lemma 2 that for every xeU,({x},R-U) e and so
x c(R- U). Therefore we have c(R- U)R- U. For every
xeR-U, we have ({x},R-U) e by [1, Lemma 3 and hence
x e c(R- U). Consequently c(R- U)=R- U.

To show the converse, assume that c(R-U)=R-U and that
Ucl: U. Then by Lemma 1, there is an x e U such that ({x}, R-U)e .
Hence x e c(R-U)=R-U, which is impossible. This completes the
proof of Lemma.

Lemma 5. The operator c defined by (.) satisfies the Kuratowski
closure axioms.

Proof. (1) c((R))=: Assume xec((R)), so that ({x},)e.
This is impossible on account of Axiom (1).

(2) AB implies c(A) c(B): This is an immediate consequence
of [i, Lemma i].

(3) c(A U B) c(A) @ c(B) follows from Axiom (2).
(4) Ac(A): If x is an arbitrary point of A, then c(x)c(A)

by (2). On account of Axiom (4), we have ({x}, {x})e/ and hence
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x e c(x), from which it follows that x e c(A) and that Ac(A).
(5) cc(A)c(A)" We assume that xc(A). Then ({x}, A)

implies (A, {x})e 5 from Lemma 2. By Axiom (5), we can find two
disjoint sets U and V such that A U, U U, x V, and V V. It
follows from (2) and Lemma 4 that c(A) c(R- V)-R- V. Using
again (2) and Lemma 4, we have cc(A)R-Vx. This ends the
proof of (5).

(6) x-c(x) follows from Axiom (4).
The operator c is called a paraproximal closure operator (or simply

closure operator). The set R topologized by Lemma 5 is called a
paraproximity space (R, , c). Lemma 4 implies that UR is open
if and only if UU.

Theorem 3. Let (R, , c) be a paraproximity space. For A,
BR, the following statements are equivalent.

(1) (A, B)e 5.
(2) Ac(B).
(3) AR-B.
Proof. The equivalence of (1) and (3) follows from our defini-

tion. It suffices to show the equivalence of (1) and (2). If (A, B)e
then by Lemma i there exists a point x in A such that ({x}, B)e .
Hence A c(B) . Conversely, assume that x e A c(B). Then
({x}, B)e and so (A, B)e from 1, Lemma 2.

Corollary. A B implies A int B B. (int B denotes the
interior of B.)

Proof. Since int B-R-c(R-B) by definition, we have
intB c(R-B)- . It follows from Theorem 3 that int BB. To
prove that A int B, assume AB. Since A c(R- B)- and
c(R- B)-R- int B, we have that A c(R- int B)-A (R- int B). By Theorem 3, this implies A int B.

By using Theorem 3 we can simplify the proof of the following
[1, Theorem lJ.

Theorem 4. The paraproximity space (R, , c) is completely
normal.

Proof. As previously showed (Lemma 5), R is a T-space. It
suffices to prove that R satisfies the T axiom of separation. Let
A and B be separated in R (i.e. A c(B)- and B c(A)- ). By
Theorem 3, this implies (A, B)e 5 and (B, A)e . Therefore by vir-
ture of Axiom (5), there exist disjoint open sets U and V such that
AU and BV.
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