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(Comm. by Kinjir6 KUNUGI, M.J.A., Sept. 12, 1967)

In the paper [1], we defined a binary relation 06, called a
paraproximity, for a pair of subsets of a point set B. We there
proved that a paraproximity yields a completely normal space ([1]
Theorem 1). Further we showed that, for a pair of subsets A and
B of a paraproximity space R, (4, B)ecd implies ANB=@ ([1]
Theorem 2). In the present paper we show that the converse of
Theorem 2 holds. Hence a paraproximity structure which is com-
patible with the topology is uniquely determined. The remaining
parts of this paper are devoted to the study of the neighborhood.

First we restate the definition of a paraproximity. By a
paraproximity on a set R we mean a binary relation 6 for pairs of
subsets of R satisfying the following axioms:

Axiom (1). For every ACR, (A, @)¢d, and (0, A)¢d. (We add
the latter condition (@, A)¢ 6 to Axiom (1) of [17.)

Axiom (2). (A,BUC)ed if and only if either (A4, B)ed or
(4, C)eo.

Axiom (3). For an arbitrary index set 4, (U;e.4,, B)ed if and
only if there exists an index p e 4 satisfying the relation (A4,, B) € é.

Axiom (4). For arbitrary two points a, be R, ({a}, {b}) € é if and
only if a=b.

Axiom (5). If (4,B)¢d and (B, A)¢d, then there exist two
disjoint subsets U and V satisfying:

(A, R—-U)¢09, (U,R—U)¢o:
(B,R—V)¢god, (V,R—V)eo.

We note that the next lemma (Steiner [3]) follows from Axiom
3).

Lemma 1. (4, B)eod if and only if ({«}, B)€ o for some x in A.

Lemma 2. If ({x}, A)ed then (4, {x}) ¢ d.

Proof. If ({x}, A)¢ o, then x¢ A by [1, Lemma 3]. Suppose
that (4, {x})ed. Then, by Lemma 1, there is a point ¢ in A such
that ({a}, {x}) € 6. From Axiom (4) follows a=a which is a contra-
diction.

1. Let R be a set with a paraproximity 6, A set BCR is
said to be a paraproximal neighborhood of a set ACR (notation:
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AcB) if and only if (A, R—B)¢d. (cf. Y. M. Smirnov [2].)

Lemma 3. The relation < satisfies the following conditions:

(1) RcR,ocQ.

(2) AcBcCcD implies AcD.

8) AcB,, i=1,2,.-.,m, if and only 1f AcNL.B;.

(4) For any index set A, \U,e A;<B tf and only +f A, B for
every 2A.

(5) xcR—y if and only if x+y.

(6) If AcR—B and BcR—A then there are two disjoint
subsets U and V such that Uc U, VeV, Ac U, and BcV.

Proof. (1) follows from Axiom (1). To prove (2), assume that
AcBeCcD. Then (B,R—C)¢6 and hence from [1, Lemma 1 and
2] (A, R—D)¢ d, which implies AcD. (3)is established by repeated
application of Axiom (2). If U,e.4:€B, then by (2), A,cB for
every 2. The converse implication of (4) is obvious from Axiom
(3), (5), and (6) evidently follow from Axiom (4) and (5) respectively.

Theorem 1. Let a relation < satisfying the conditions (1)—
(6) of Lemma 3, be defined on the family of subsets of R. Then
0, defined by (A, B)ed if and only is AdzR— B, is a paraproximity
on R.

Proof. We must show that ¢ as defined in terms of the relation
<, satisfies Axiom (1)—(5). For every ACR, we have from Lemma
3 (1) and (2), that AcR and hence (4, @)¢ . Similarly we have
that (@, A)¢ 6. Thus Axiom (1) holds. To prove Axiom (2), let
(A,BUC)ed. Then ActR—(BUC)=(R—-B)N(R—C). Assume, on
the contrary, that AcR—B and AcR—C. Then from Lemma 3
(3), we have that Ac(R—B)N(R—C), which is impossible., There-
fore AccR—B or AczR—C. This proves “only if” part of Axiom
(2). “if” part of Axiom (2) also follows from (3) in Lemma 3.
Axioms (3), (4), and (5) are derived from (4), (5), and (6) in Lemma
3 respectively.

Moreover, paraproximal neighborhoods have the following prop-
erties:

Theorem 2.

(1) AcB implies ACB.

(2) If A,cB;,1=1,2, .- n, then N A, cNB; and UL,A,;
c Ut.B,.

(3) Let A be a subset of R and x a point of R. Then xcR—A
implies AcR—zx.

(4) For every point x, R—xcR—ux.

(5) AcB implies the existence of a set UCR such that
AcUcB and UcU.

(6) AcB implies the existence of sets U and VCR such that
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AcUcVeB,UcU, and VcV.

Proof. To prove (1), let AcB. By definition, it follows that
(A,R—B)¢d and so AN(R—B)=g from [1, Lemma 3]. We show
that (2) holds in the case of n=2. Let A;cB;, thatis, (4;,, R—B),)
¢0,1=1,2. Then by [1, Lemma 2], we have (A4,NA4, R—B;)
¢0(t=1,2) and so (A,NA4,, R—(B,NB,))¢o from Axiom (2). It
follows that A, NA,cB NB, Assume again that A,cB,(i=1,2).
Since (A;, R—B;)¢ 6(t=1, 2), we have (A, R—(B,UB,))¢d and (A4,
R—(B,UB,)) ¢ 0 and hence A,U A,cB,UB,. (3) and (4) are immediate
consequences of Lemma 2 and [1, Lemma 47, respectively.

To establish (5), assume that A< B, that is, (4, R—B)¢ad.
From [1, Lemma 2], ({x}, R—B)¢d for every x in A and hence
(R—B, {#})¢ 0 by Lemma 2, On account of Axiom (5), there exist
two disjoint subsets U, and V, (xe A) such that 2cU,, U,cU,,
R—-BcV,, and V,cV,. Put U=U,e,U,. From Lemma 3(2) we
have xc U since xcU,cU for every xc¢ A, Hence by Lemma 1,
(A,R—U)¢06 so that AcU. Since U,cU,c U, from Lemma 3(2)
we have U,c U for every xe€ A. By Lemma 3(4), U,e.U,cU and
hence UcU. Further since U,NV,=@ and R—BcR—-U, for
every x € A, we have UCB. Since Uc Uc B, it follows from Lemma
3 (2) that UcB. Consequently U is the required set. (6) follows
from a twofold application of (5).

3. Let R be a set and 6 a paraproximity on R. For ACR,
we set (x) c(A)={x:x e R, ({x}, A) € d}.

Lemma 4. For UcCR,UcU if and only if ¢(R—U)=R—-U.

Proof. Suppose that Uc Ui.e. (U, R—U)¢d. Then it follows
from [1, Lemma 2] that for every x2e U,({x}, R—U)¢d and so
x¢c(R—U). Therefore we have ¢(R—U)cCR—U. For every
xe R—U, we have ({#}, R—U)e€d by [1, Lemma 3] and hence
xec(R—U). Consequently ¢(R—U)=R-U.

To show the converse, assume that ¢(R—U)=R—U and that
Uc U. Then by Lemma 1, there is an « € U such that ({x}, R—U) e .

Hence x e ¢(R— U)=R— U, which is impossible. This completes the
proof of Lemma,

Lemma 5. The operator ¢ defined by () satisfies the Kuratowski
closure axioms.

Proof. (1) ¢(@)=©@: Assume zecc(w), so that ({x}, @)ed.
This is impossible on account of Axiom (1).

(2) AcB implies ¢(A)ce(B): This is an immediate consequence
of [1, Lemma 1].

3) c(AUB)cc(A)Uce(B) follows from Axiom (2).

(4) Ace(A): If x is an arbitrary point of A, then ec(x)cc(A)
by (2). On account of Axiom (4), we have ({x},{x})ed and hence
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a € ¢(x), from which it follows that x e c¢(A) and that Acc(A).

(5) ce(A)ce(A): We assume that x¢c(d4). Then ({x}, A)g¢d
implies (A4, {x})¢ 6 from Lemma 2, By Axiom (5), we can find two
disjoint sets U and V such that AcU, UcU,z2cV,and VcV. It
follows from (2) and Lemma 4 that ¢(A)ce(R—V)=R—V. Using
again (2) and Lemma 4, we have cc(A)cR—V3x. This ends the
proof of (5).

(6) x=c(x) follows from Axiom (4).

The operator ¢ is called a paraproximal closure operator (or simply
closure operator). The set R topologized by Lemma 5 is called a
paraproximity space (R, d, ¢). Lemma 4 implies that UCR is open
if and only if UcU.

Theorem 3. Let (R, 0,c) be a paraproximity space. For A,
BCR, the following statements are equivalent.

1) (A, B)eo.

2) AneB)+@.

(8) AcR—B.

Proof. The equivalence of (1) and (8) follows from our defini-
tion. It suffices to show the equivalence of (1) and (2). If (A, B)ed
then by Lemma 1 there exists a point « in A such that ({x}, B) €.
Hence AnNne(B)=@. Conversely, assume that xe Ane(B). Then
({z}, B)e 6 and so (A, B)ed from [1, Lemma 27.

Corollary. AcB implies Ac int BcB. (int B denotes the
intertor of B.)

Proof. Since int B=R—c¢(R—B) by definition, we have
int BNe(R—B)=g. It follows from Theorem 3 that int BeB. To
prove that Ac int B, assume AcB. Since ANc¢(R—B)= and
¢(R—B)=R— int B, we have that Ane¢(R— int B)=AN{R— int B)
=@. By Theorem 3, this implies A< int B.

By using Theorem 3 we can simplify the proof of the following
[1, Theorem 17.

Theorem 4. The paraproximity space (R, 0, c) is completely
normal.

Proof. As previously showed (Lemma 5), R is a T)-space. It
suffices to prove that R satisfies the T, axiom of separation. Let
A and B be separated in R(i.e. ANc¢(B)=g and BNc(4A)=©). By
Theorem 3, this implies (4, B)¢ 6 and (B, A)¢d. Therefore by vir-
ture of Axiom (5), there exist disjoint open sets U and V such that
AcU and BcV,
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