195. On Free Abelian m-Groups. III

By F. M. Sioson
University of Ateneo de Manila, Manila
(Comm. by Kinjirô Kunugi, m.J.A., Nov. 13, 1967)
In this part, the notion of tensor product of abelian m-groups will be introduced.

Definition. The tensor product of the abelian m-groups M and N is defined as F / θ and is denoted by $M \boxtimes N$.

If $|(x, y)| / \theta$ is denoted by $x \boxtimes y$, observe that

$$
\begin{aligned}
{\left[x_{1} x_{2} \cdots x_{m}\right] \boxtimes y } & =\left[\left(x_{1} \boxtimes y\right)\left(x_{2} \boxtimes y\right) \cdots\left(x_{m} \boxtimes y\right)\right], \\
x \boxtimes\left[y_{1} y_{2} \cdots y_{m}\right] & =\left[\left(x \boxtimes y_{1}\right)\left(x \boxtimes y_{2}\right) \cdots\left(x \boxtimes y_{m}\right)\right],
\end{aligned}
$$

and $x^{\langle n\rangle} \boxtimes y=x \boxtimes y^{\langle n\rangle}=(x \boxtimes y)^{\langle n\rangle}$.
Theorem 9. Let M, N, P be arbitrary abelian m-groups and $f: M \times N \rightarrow P$ be a function satisfying the conditions
(a) $f\left(\left[x_{1} x_{2} \cdots x_{m}\right], y\right)=\left[f\left(x_{1}, y\right) f\left(x_{2}, y\right) \cdots f\left(x_{m}, y\right)\right]$,
(b) $f\left(x,\left[y_{1} y_{2} \cdots y_{m}\right]\right)=\left[f\left(x, y_{1}\right) f\left(x, y_{2}\right) \cdots f\left(x, y_{m}\right)\right]$,
(c) $f\left(x^{\langle n\rangle}, y\right)=f\left(x, y^{\langle n\rangle}\right)$,
for all $x, x_{1}, \cdots, x_{m} \in M$ and $y, y_{1}, \cdots, y_{m} \in N$. Then there exists uniquely an m-group homomorphism $h: M \boxtimes N \rightarrow P$ such that the following diagram is commutative

that is, $h(x \boxtimes y)=f(x, y)$ for all $x \in M$ and $y \in N$.
Proof. Let F be the free abelian m-group on $M \times N$ and $i: M \times N \rightarrow F$ be the injection $\mathrm{i}(x, y)=|(x, y)|$. Consider the following diagram.

By Theorem 4, f possesses a unique homomorphic extension $f^{\#}: F \rightarrow P$ such that $f^{\sharp} \cdot i(x, y)=f(x, y)$ so that $f^{\sharp}(|(x, y)|)=f(x, y)$. Since
$f^{\#}\left(\left|\left(\left[x_{1} x_{2} \cdots x_{m}\right], y\right)\right|\right)=f\left(\left[x_{1} x_{2} \cdots x_{m}\right], y\right)$

$$
=\left[f\left(x_{1}, y\right) f\left(x_{2}, y\right) \cdots f\left(x_{m}, y\right)\right]=\left[f^{*}\left(\left|\left(x_{1}, y\right)\right|\right) \cdots f^{\sharp}\left(\left|\left(x_{m}, y\right)\right|\right)\right],
$$

$$
\begin{aligned}
& f^{\#}\left(\left|\left(x,\left[y_{1} y_{2} \cdots y_{m}\right]\right)\right|\right)=f\left(x,\left[y_{1} y_{2} \cdots y_{m}\right]\right) \\
& \quad=\left[f\left(x, y_{1}\right) f\left(x, y_{2}\right) \cdots f\left(x, y_{m}\right)\right]=\left[f^{\#}\left(\left|\left(x, y_{1}\right)\right|\right) \cdots f^{\#}\left(\left|\left(x, y_{m}\right)\right|\right)\right], \\
& f^{\#}\left(\left|\left(x^{(n\rangle}, y\right)\right|\right)=f\left(x^{\langle n\rangle}, y\right)=f\left(x, y^{\langle n\rangle}\right)=f^{\#}\left(\left|\left(x, y^{\langle n\rangle}\right)\right|\right),
\end{aligned}
$$

then $\theta \subseteq f^{\#} \circ\left(f^{\#}\right)^{-1}$. This implies then that $f^{\#}$ factors through the natural homomorphism $p: F \rightarrow F / \theta=M \boxtimes N$, that is to say, there exists a homomorphism $h: M \boxtimes N \rightarrow P$ such that $h \circ p=f^{\#}$. Thus

$$
h(x \boxtimes y)=h(p(|(x, y)|))=(h \circ p)(|(x, y)|)=f^{*}(|(x, y)|)=f(x, y) .
$$

The proof is thus completed.
The following follows from the preceding theorem and its proof is similar to the proof in ordinary groups.

Theorem 10. (a) $M \boxtimes N \cong N \boxtimes M$;
(b) $\quad(M \boxtimes N) \boxtimes P \cong M \boxtimes(N \boxtimes P)$,
for any three abelian m-groups M, N, and P.
The following Lemmata will be needed in the following.
Lemma A. (1) If $x_{1}, \cdots, x_{m-1} \in M$ such that $\left(x_{1}, \cdots, x_{m-1}\right)$ is an ($m-1$-adic identity of M and $y \in N$, then $\left(\left(x_{1} \boxtimes y\right), \cdots,\left(x_{m} \boxtimes y\right)\right.$) is an ($m-1$)-adic identity of $M \boxtimes N$.
(2) If $y_{1}, \cdots, y_{m-1} \in N$ such that $\left(y_{1}, \cdots, y_{m-1}\right)$ is an ($m-1$)adic identity of N and $x \in M$, then $\left(\left(x \boxtimes y_{1}\right), \cdots,\left(x \boxtimes y_{m}\right)\right)$ is an ($m-1$)-adic identity of $M \boxtimes N$.

Proof. For each $x \in M$, note that $\left[\left(x_{1} \boxtimes y\right) \cdots\left(x_{m-1} \boxtimes y\right)(x \boxtimes y)\right]$ $=\left[x_{1} x_{2} \cdots x_{m-1} x\right] \boxtimes y=x \boxtimes y$. Similarly $\quad\left[(x \boxtimes y)\left(x_{1} \boxtimes y\right) \cdots\left(x_{m-1} \boxtimes y\right)\right]$ $=x \boxtimes y$. The proof of (2) is analogous.

Lemma B. (1) If $x_{1}, \cdots, x_{m-1} \in M$ such that $\left(x_{1}, \cdots, x_{m-1}\right)$ is an ($m-1$)-adic identity of M and $y_{1}, \cdots, y_{s} \in N$, then $\left(\left(x_{1} \boxtimes y_{1}\right), \cdots\right.$, $\left(x_{m-1} \boxtimes y_{s}\right)$) is an $(m-1)$ s-adic identity of $M \boxtimes N$.
(2) If $y_{1}, \cdots, y_{m-1} \in N$ such that $\left(y_{1}, \cdots, y_{m-1}\right)$ is an ($m-1$)adic identity of N and $x_{1}, \cdots, x_{r} \in M$, then $\left(\left(x_{1} \boxtimes y_{1}\right), \cdots,\left(x_{r} \boxtimes y_{m-1}\right)\right)$ is an $r(m-1)$-adic identity of $M \boxtimes N$.

Proof. We shall only prove (1) since the proof of (2) is similar. Let $y_{s+1}, \cdots, y_{m-1} \in N$ such that (y_{1}, \cdots, y_{m-1}) is and ($m-1$)-adic identity of N; then

$$
\begin{gathered}
{\left[\left(x_{1} \boxtimes y_{1}\right) \cdots\left(x_{m-1} \boxtimes y_{s}\right)(x \boxtimes y)\right]=\left[(x _ { 1 } \boxtimes y _ { 1 }) \cdots (x _ { m - 1 } \boxtimes y _ { s }) \left[\left(x \boxtimes y_{1}\right) \cdots\right.\right.} \\
\left.\left.\left(x \boxtimes y_{m-1}\right)(x \boxtimes y)\right]\right]=\left[\left[\left(x_{1} \boxtimes y_{1}\right) \cdots\left(x_{m-1} \boxtimes y_{1}\right)\left(x \boxtimes y_{1}\right)\right] \cdots\right. \\
\left.\left[\left(x_{1} \boxtimes y_{s}\right) \cdots\left(x_{m-1} \boxtimes y_{s}\right)\left(x \boxtimes y_{s}\right)\right]\left(x \boxtimes y_{s+1}\right) \cdots\left(x \boxtimes y_{m-1}\right)(x \boxtimes y)\right] \\
\quad=\left[\left(x \boxtimes y_{1}\right) \cdots\left(x \boxtimes y_{s}\right)\left(x \boxtimes y_{s+1}\right) \cdots\left(x \boxtimes y_{m-1}\right)(x \boxtimes y)\right]=x \boxtimes y .
\end{gathered}
$$

Lemma C. (1) If $\left(x_{1}, \cdots, x_{r}\right) \stackrel{r}{\sim}\left(x_{1}^{\prime}, \cdots, x_{r}^{\prime}\right)$ in M with $r \leqq m-1$ and $y_{1}, \cdots, y_{s} \in N$, then $\left(\left(x_{1} \boxtimes y_{1}\right), \cdots,\left(x_{r} \boxtimes y_{s}\right)\right) \stackrel{r s}{\sim}\left(\left(x_{1}^{\prime} \boxtimes y_{1}\right)\right.$, $\left.\cdots,\left(x_{r}^{\prime} \boxtimes y_{s}\right)\right)$ in $M \boxtimes N$.
(2) If $\left(y_{1}, \cdots, y_{s}\right) \stackrel{s}{\sim}\left(y_{1}^{\prime}, \cdots, y_{s}^{\prime}\right)$ in N with $s \leqq m-1$ and $x_{1}, \cdots, x_{r} \in M$, then $\left(\left(x_{1} \boxtimes y_{1}\right), \cdots,\left(x_{r} \boxtimes y_{s}\right)\right) \stackrel{r s}{\sim}\left(\left(x_{1} \boxtimes y_{s}^{\prime}\right), \cdots,\left(x_{r} \boxtimes y_{s}^{\prime}\right)\right)$
in $M \boxtimes N$.
Proof. Suppose $r \leqq m-2$. Let $x_{r+1}, \cdots, x_{m-1} \in M$ such that $\left(x_{1}, \cdots, x_{m-1}\right)$ and hence also ($x_{1}^{\prime}, \cdots, x_{r}^{\prime}, x_{r+1}, \cdots, x_{m-1}$) is an ($m-1$)adicidentity of M. For each $x \in M$, we have by Lemma $\mathrm{B}(1)$,

$$
\begin{aligned}
& {\left[\left(x_{1} \boxtimes y_{1}\right) \cdots\left(x_{r} \boxtimes y_{s}\right)\left(x_{r+1} \boxtimes y_{1}\right) \cdots\left(x_{m-1} \boxtimes y_{s}\right)(x \boxtimes y)\right]=x \boxtimes y} \\
& \quad=\left[\left(x_{1}^{\prime} \boxtimes y_{1}\right) \cdots\left(x_{r}^{\prime} \boxtimes y_{s}\right)\left(x_{r+1} \boxtimes y_{1}\right) \cdots\left(x_{m-1} \boxtimes y_{s}\right)(x \boxtimes y)\right] .
\end{aligned}
$$

Whence the result follows. The proof for the case when $r=m-1$ is analogous. The proof of the second part will be omotted, since it is the same as the preceding.

Lemma D. If $\left(x_{1}, \cdots, x_{r}\right) \stackrel{r}{\sim}\left(x_{1}^{\prime}, \cdots, x_{r}^{\prime}\right)$ in M and $\left(y_{1}, \cdots, y_{s}\right)$ $\stackrel{s}{\sim}\left(y_{1}^{\prime}, \cdots, y_{s}^{\prime}\right)$ in N, then

$$
\left(x_{1} \boxtimes y_{1}, \cdots, x_{r} \boxtimes y_{s}\right) \stackrel{r s}{\sim}\left(x_{1}^{\prime} \boxtimes y_{1}^{\prime}, \cdots, x_{r}^{\prime} \boxtimes y_{s}^{\prime}\right) .
$$

Proof. By Lemma $\mathrm{C}(1)$ we have in $M \boxtimes N$,

$$
\left(x_{1} \boxtimes y_{1}, \cdots, x_{r} \boxtimes y_{s}\right) \stackrel{r s}{\sim}\left(x_{1}^{\prime} \boxtimes y_{1}, \cdots, x_{r}^{\prime} \boxtimes y_{s}\right) ;
$$

by Lemma $\mathrm{C}(2)$ we have in $M \boxtimes N$,

$$
\left(x_{1}^{\prime} \boxtimes y_{1}, \cdots, x_{r}^{\prime} \boxtimes y_{s}\right) \stackrel{r s}{\sim}\left(x_{1}^{\prime} \boxtimes y_{1}^{\prime}, \cdots, x_{r}^{\prime} \boxtimes y_{s}^{\prime}\right) .
$$

The final result follows by transitivity.
Lemma E. Let $G=M \cup M^{2} \cup \cdots \cup M^{m-1}$ be the containing group of the m-group M. Then $\left(x_{1}, \cdots, x_{i}\right) \stackrel{i}{\sim}\left(x_{1}^{\prime}, \cdots, x_{i}^{\prime}\right)$ in M if and only if $x_{1} x_{2} \cdots x_{i}=x_{1}^{\prime} x_{2}^{\prime} \cdots x_{i}^{\prime}$ in G.

The proof of Lemma E is clear.
Theorem 11. The tensor product of two abelian m-groups is a coset of the tensor product of their respective containing groups (by the Post Coset Theorem).

Proof. Let M and N be two abelian m-groups and $M \boxtimes N$ be their tensor product. Denote respectively by $A=M \cup 2 M \cup \ldots$ $\cup(m-1) M, B=N \cup 2 N \cup \cdots \cup(m-1) N$, and $C=(M \boxtimes N) \cup 2(M \boxtimes N)$ $\cup \cdots \cup(m-1)(M \boxtimes N)$ their containg (abelian) groups by the Post Coset Theorem. Define $f: A \times B \rightarrow C$ such that

$$
f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right)=\sum_{i=1}^{r} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)
$$

for all $x_{1}, \cdots, x_{r} \in$ and $y_{1}, \cdots, y_{s} \in N$. Note that

$$
f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right) \in(M \boxtimes N)^{m-1}
$$

if $r s \equiv 0(\bmod m-1)$; otherwise $f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right) \in(M \boxtimes N)^{t}$, where t is the residue of $r s(\bmod m-1)$. By the preceding Lemmata D and E, f is clearly well-defined. Moreover,

$$
\begin{aligned}
& f\left(\sum_{i=1}^{r} x_{i}+\sum_{i=r+1}^{n} x_{i}, \sum_{j=1}^{s} y_{j}\right)=f\left(\sum_{i=1}^{n} x_{i}, \sum_{j=1}^{s} y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right) \\
& =\sum_{i=1}^{r} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)+\sum_{i=r+1}^{n} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)=f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right)+f\left(\sum_{i=r+1}^{n} x_{i}, \sum_{j=1}^{s} y_{j}\right) .
\end{aligned}
$$

Similarly, $f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}+\sum_{j=s+1}^{n} y_{j}\right)=f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right)+f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=s+1}^{n} y_{j}\right)$. Now, note that if $x_{1}, \cdots, x_{m-1} \in M$ such that (x_{1}, \cdots, x_{m-1}) is an ($m-1$)-adic identity of M, i.e. $\sum_{i=1}^{m-1} x_{i}=0$ in A, then $\sum_{i=r+1}^{m-1} x_{i}=-\sum_{i=1}^{r} x_{i}$ in A. Thus, $f\left(-\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right)=f\left(\sum_{i=r+1}^{m-1} x_{i}, \sum_{j=1}^{s} y_{j}\right) \sum_{i=r+1}^{m-1} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)$. By Lemmata B and E, then $\sum_{i=1}^{m-1} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)=0$ in $M \boxtimes N$, and hence

$$
\sum_{i=r+1}^{m-1} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)=-\sum_{i=1}^{r} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right) .
$$

Similarly, $f\left(\sum_{i=1}^{r} x_{i},-\sum_{j=1}^{s} y_{j}\right)=f\left(\sum_{i=1}^{r} x_{i}, \sum_{j=s+1}^{m-1} y_{j}\right)=\sum_{i=1}^{r} \sum_{j=s+1}^{m-1}\left(x_{i} \boxtimes y_{j}\right)=-\sum_{i=1}^{r} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right)$. whence

$$
f\left(-\sum_{i=1}^{r} x_{i}, \sum_{j=1}^{s} y_{j}\right)=f\left(\sum_{i=1}^{r} x_{i},-\sum_{j=1}^{s} y_{j}\right) .
$$

Hence, by the analogue Theorem 9 for abelian groups, f extends to a homomorphism $f^{\#}: A \otimes B \rightarrow C$ such that

$$
f^{\sharp}\left(\sum_{i=1}^{r} x_{i} \otimes \sum_{j=1}^{s} y_{j}\right)=\sum_{i=1}^{r} \sum_{j=1}^{s}\left(x_{i} \boxtimes y_{j}\right) .
$$

This is obviously an epimorphism. To show that f^{*} is also a monomorphism, suppose

$$
f^{\#}\left(\sum_{k=1}^{n}\left(\sum_{i=1}^{r_{k}} x_{i}^{k} \otimes \sum_{j=1}^{s_{k}} y_{j}^{k}\right)\right)=f^{\sharp}\left(\sum_{k=1}^{n^{\prime}}\left(\sum_{i=1}^{r_{k}^{\prime}} x_{i}^{\prime k} \otimes \sum_{j=1}^{s_{k}^{\prime}} y_{j}^{\prime k}\right)\right)
$$

so that $\sum_{k=1}^{n} \sum_{i=1}^{r_{k}} \sum_{j=1}^{s_{k}}\left(x_{i}^{k} \boxtimes y_{j}^{k}\right)=\sum_{k=1}^{n^{\prime}} \sum_{i=1}^{r_{k}^{\prime}} \sum_{j=1}^{s_{k}^{\prime}}\left(x_{i}^{\prime k} \boxtimes y_{j}^{\prime k}\right)$. However, since $\theta \subseteq \theta^{*}$, then

$$
\sum_{k=1}^{n} \sum_{i=1}^{r_{k}} \sum_{j=1}^{s_{k}}\left(x_{i}^{k} \otimes y_{j}^{k}\right)=\sum_{k=1}^{n^{\prime}} \sum_{i=1}^{r_{k}^{\prime}} \sum_{j=1}^{s_{k}^{\prime}}\left(x_{i}^{\prime k} \otimes y_{j}^{\prime k}\right)
$$

or

$$
\sum_{k=1}^{n}\left(\sum_{i=1}^{r_{k}} x_{i}^{k} \otimes \sum_{j=1}^{s_{k}} y_{j}^{k}\right)=\sum_{k=1}^{n^{\prime}}\left(\sum_{i=1}^{r_{k}^{\prime}} x_{i}^{\prime k} \otimes \sum_{j=1}^{s_{k}^{\prime}} y_{i}^{\prime k}\right)
$$

Whence $f^{\#}$ is an isomorphism.
Theorem 12. $Z \boxtimes M=M$, where M is an arbitrary abelian m-group and Z is the infinite cyclic m-group of integers.

Proof. Consider the function $f: Z \times M \rightarrow M$ such that $f(n, x)=x^{\langle n\rangle}$. Then f satisfies the following conditions:
(1) $f\left(\left[n_{1} n_{2} \cdots n_{m}\right], x\right)=x^{\left\langle\left[n_{1} n_{2} \cdots n_{m}\right]\right\rangle}=x^{\left\langle n_{1}+n_{2}+\cdots+n_{m}+1\right\rangle}\left[x^{\left\langle n_{1}\right\rangle} x^{\left\langle n_{2}\right\rangle} \cdots\right.$ $\left.x^{\left\langle n_{m}\right\rangle}\right]=\left[f\left(n_{1}, x\right) f\left(n_{2}, x\right) \cdots f\left(n_{m}, x\right)\right]$,
(2) $f\left(n,\left[x_{1} x_{2} \cdots x_{m}\right]\right)=\left[x_{1} x_{2} \cdots x_{m}\right]^{\langle n\rangle}=\left[x_{1}^{\langle n\rangle} x_{2}^{\langle n\rangle} \cdots x_{m}^{\langle n\rangle}\right]$ $=\left[f\left(n, x_{1}\right) f\left(n, x_{2}\right) \cdots f\left(n, x_{m}\right)\right]$,
(3) $f\left(n^{\langle k\rangle}, x\right)=f(k n(m-1)+k+n, x)=x^{\langle k n(m-1)+k+n\rangle}=\left(x^{\langle k\rangle}\right)^{\langle n\rangle}=f(n$, $\left.x^{\langle k\rangle}\right)$. Thus, f extends to a homomorphism $f^{\#}: Z \boxtimes M \rightarrow M$ such that
$f^{*}(n \boxtimes x)=x^{\langle n\rangle}$ or more generally, $f^{*}\left(\sum_{i}\left(n_{i} \boxtimes x_{i}\right)^{\left\langle k_{i}\right\rangle}\right)=\sum_{i}\left(x_{i}^{\left\langle n_{i}\right\rangle}\right)^{\left\langle k_{i}\right\rangle}$. Define $g^{*}: M \rightarrow Z \boxtimes M$ such that $g^{*}(x)=0 \boxtimes x$. Since $f^{*}\left(\left[x_{1} x_{2} \cdots x_{m}\right]\right)=0 \boxtimes\left[x_{1} x_{2} \cdots x_{m}\right]$

$$
=\left[\left(0 \boxtimes x_{1}\right)\left(0 \boxtimes x_{2}\right) \cdots\left(0 \boxtimes x_{m}\right)\right]=\left[g^{\sharp}\left(x_{1}\right) g^{*}\left(x_{2}\right) \cdots g^{\sharp}\left(x_{m}\right)\right],
$$

then g^{*} is an m-group homomorphism. Now, observe that

$$
f^{\sharp} g^{\sharp}(x)=f^{\sharp}(0 \boxtimes x)=x^{(0\rangle}=x=1_{M}(x)
$$

and

$$
\begin{aligned}
& g^{*} f^{*}\left(\sum_{i}\left(n_{i} \boxtimes x_{i}\right)^{\left\langle k_{i}\right\rangle}\right)=g^{*}\left(\sum_{i}\left(x_{i}^{\left\langle n_{i} i\right.}\right)^{\left\langle k_{i}\right\rangle}\right)=0 \boxtimes \sum_{i}\left(x_{i}^{\left\langle n_{i}\right.}\right)^{\left\langle k_{i}\right\rangle}=\sum_{i}\left(0 \boxtimes\left(x_{i}^{\left\langle n_{i}\right.}\right)^{\left\langle k_{i}\right\rangle}\right) \\
& =\sum_{i}\left(0 \boxtimes x_{i}^{\left\langle n_{i}\right.}\right)^{\left\langle k_{i}\right\rangle}=\sum_{i}\left(0^{\left(n_{i}\right\rangle} \boxtimes x_{i}\right)^{\left\langle k_{i}\right\rangle}=\sum_{i}\left(n_{i} \boxtimes x_{i}\right)^{\left\langle k_{i}\right\rangle}=1_{z \boxtimes \otimes u}\left(\sum_{i}\left(n_{i} \boxtimes x_{i}\right)^{\left(k_{i}\right\rangle}\right) .
\end{aligned}
$$

Whence, f^{*} and g^{*} are isomorphisms inverse to each other.

References

[1] Boccioni, D.: Simmetrizzazione di una operazione n-aria. Rendiconti del Seminario Matematico della Universita di Padova, 35, 1-25 (1964).
[2] Bruck, R. H.: A Survey of Binary Systems. Berlin-Heidelberg-Göttingen. Springer-Verlag (1958).
[3] Dörnte, W.: Untersuchungen über einen verallgemeinerten Gruppenbegriff. Mathematische Zeitschrift, 29, 1-19 (1929).
[4] Post, E. L.: Polyadic groups. Transactions of the American Mathematical Society, 48, 208-350 (1940).
[5] Sioson, F. M.: Cyclic and homogenous m-semigroups. Proc. Japan Acad., 39, 444-449 (1963).
[6] -: Ideals in $(m+1)$-semigroups. Annali di Matematica Pura ed Applicata, 68, 161-200 (1965).
[7] Tvermoes, H.: Über eine Verallgemeinerung des Gruppenbegriffs. Mathematica Scandinavica, 1, 18-30 (1953).

