185. A Note on the Generation of Nonlinear Semigroups in a Locally Convex Space

By Shinnosuke ÔHARU Waseda University, Tokyo (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

1. Let X be an (FM)-space, i.e., a Frechet space which is also a Montel space. For example, the space $H(\Omega)$ of holomorphic functions on a domain Ω in the complex plane, which is endowed with the topology of locally uniform convergence, the space (S) of rapidly decreasing functions on \mathbb{R}^n and \mathbb{R}^n are this space.

For a not necessarily linear operator A from X into itself, we introduce the following conditions:

(1) There exists a positive constant $\delta > 0$ such that for each $h \in (0, \delta]$, the topological inverse mapping $(I-hA)^{-1}$ of the mapping $x \rightarrow x - hAx$ exists on X as a single valued operator.

(2) For any T>0, the family of operators $\{(I-hA)^{-n}\}$ is equicontinuous on X in $h \in (0, \delta]$ and n with $hn \in [0, T]$. (Put $(I-hA)^{\circ} = I$, the identity mapping.)

(3) For any $x \in D(A)$ and for any T > 0, the set $\{A(I-hA)^{-n}x: h \in (0, \delta], hn \in [0, T]\}$ is bounded in X.

Definition 1. A not necessarily linear operator A from X to itself is said to be of class \mathfrak{A} if for this A all of the above conditions are satisfied.

In the case that A is a densely defined closed linear operator, the well-known necessary and sufficient condition for A being the infinitesimal generator of an equicontinuous semigroup is rather stronger than the condition $A \in \mathfrak{A}$. We mention here some remarks on the abovementioned conditions:

(i) From (3) it follows that for any $x \in X$ the set $\{(I-hA)^{-n}x: h \in (0, \delta], hn \in [0, T]\}$ is bounded in X.

(ii) From (2) it follows that if $D(A) \ni x_n \rightarrow x$ and $Ax_n \rightarrow y$, then $x \in D(A)$ and Ax = y.

(iii) The following condition implies (2) and (3):

For any $x \in X$ and T > 0 there exists a neighbourhood U(x) of x such that for any continuous seminorm p there exists a continuous seminorm q which is independent of $h \in (0, \delta]$, n with $hn \in [0, T]$ and $z \in U(x)$, such that

$$p((I-hA)^{-n}x-(I-hA)^{-n}z) \leq q(x-z), \qquad z \in U(x).$$

(iv) If A maps bounded sets in D(A) into bounded sets, then

 $t \ge 0$.

(3) can be replaced by the following

(3)' For any T>0 there exists an $x_T \in X$ such that the set $\{(I-hA)^{-n}x_T: h \in (0, \delta], hn \in [0, T]\}$ is bounded in X.

Next we give the definitions of the semigroup of nonlinear operators and the infinitesimal generator.

Definition 2. Let D be a closed subset in X. A one parameter family $\{T(t)\}_{t\geq 0}$ of continuous mappings from D into itself is called to be a (nonlinear) semigroup on D, if the following conditions are satisfied:

 $(4) \quad T(0) = I, \ T(t+s) = T(t)T(s) \ on \ D, \qquad t, s \ge 0.$

(5) For each $x \in D$, T(t)x is strongly continuous in $t \ge 0$.

And a semigroup $\{T(t)\}$ on D is called to be locally equicontinuous if for any s>0, $\{T(t)\}$ is equicontinuous on D in $t \in [0, s]$.

Definition 3. We define the infinitesimal generator A_0 of a semigroup $\{T(t)\}_{t\geq 0}$ mentioned above by

$$A_0x = \lim_{h \to 0} h^{-1}(T(h)x - x)$$

whenever the limit exists.

Lately K. Kojima [2] gave the following result^{*}: Let A be a continuous mapping on X into itself, for which (1), (2), and (3)' are satisfied. Then it generates a nonlinear locally equicontinuous semigroup $\{T(t)\}$ on X in such a way that for each $x \in X$, T(t)x is continuously differentiable at all $t \ge 0$ and T'(t)x = AT(t)x, $t \ge 0$.

In this paper we shall treat the generation of nonlinear semigroups for the mapping of class \mathfrak{A} defined above. The main result is the following

Theorem. Any mapping A of class \mathfrak{A} generates a nonlinear locally equicontinuous semigroup $\{T(t)\}_{t\geq 0}$ on $\overline{D(A)}$ in such a way that for each $x \in D(A)$,

(6) $T(t)x \in D(A)$ for all $t \ge 0$,

(7) T(t)x is continuously differentiable on $t \ge 0$ and

$$T'(t)x = AT(t)x,$$

Moreover let A_0 be its infinitesimal generator. If for some $h_0 \in (0, \delta], I-h_0A_0$ is injective, i.e., for any pair of distinct elements x, y of $D(A)(I-h_0A_0)x \neq (I-h_0A_0)y$, then $A_0 = A$.

2. Before proving the above theorem, we shall mention some important properties of (FM)-space, in the following

Proposition. Let X be an (FM)-space. Then the following assertions are true:

- (a) Any bounded set is sequentially compact.
- (b) Any weakly convergent sequence is also strongly convergent

848

^{*)} He obtains the result in the complete locally convex space such that it is separable and every bounded closed subset is sequentially compact.

Nonlinear Semigroups in a Locally Convex Space

to the same limit.

No. 9]

(c) X is weakly sequentially complete as well as sequentially complete.

(d) Both X and the dual X^* are separable in the sense that there exists a countable dense subset $\{x_n\} \subset X$ (resp. $\{x_n^*\} \subset X^*$) and every element is the strong limit of a subsequence of $\{x_n\}$ (resp. $\{x_n^*\}$).

The proof is omitted. See Köthe [4] and Edwards [5].

Now we give some notations used throughout this paper: We denote any strictly monotone increasing sequence of positive numbers tending to the infinity by $\{r_n\}$ and put $T(n, t) = (I - r_n^{-1}A)^{-[r_nt]}$ (where [] is the Gaussian blacket.) which are well-defined on X for all sufficiently large n.

Lemma. Let $A \in \mathfrak{A}$. Then there exists a subsequence $\{n_k\}$ of $\{n\}$ such that $\lim_{k \to \infty} T(n_k, t)x = T(t)x$ exists for each $x \in \overline{D(A)}$. And for any s > 0, $\{T(t)\}$ is equicontinuous on $\overline{D(A)}$ in $t \in [0, s]$.

Proof. For any $x \in D(A)$ and $t \ge 0$, since $r_n^{-1}[r_n t] \le t$, it follows from (i) that $\{T(n, t)x\}_n$ is bounded in X, and so, from (a) of Proposition there exists a subsequence $\{n_j\}$ of $\{n\}$ such that $\lim_{j\to\infty} T(n_j, t)x$ exists. And D(A) is separable with respect to the relative topology, because X is a metric space. Let $\{t_j\}$ be the totality of rational numbers in $[0, \infty)$ and $\{x_i\}$ be a countable dense subset in D(A). Then from the usual diagonal procedure we can find a subsequence $\{n_k\}$ of $\{n\}$ such that the limits $\lim_{k\to\infty} T(n_k, t_j)x_i$ exist for all i and j.

Let [0, T] be a sufficiently large interval containing the t in question. From the simple calculation we have

$$r_n^{-1}\sum_{k=1}^{\lfloor r_n \rfloor} A(I-r_n^{-1}A)^{-(k-1)}x = T(n, t)x - x + r_n^{-1}\{Ax - AT(n, t)x\}.$$

Since for any $x^* \in X^*$, $x^*AT(n, s)x$ is a step function on [0, T], we get

$$(8) \quad x^*(T(n, t)x - x) = \int_0^t x^* A T(n, s) x \, ds \\ + r_n^{-1} x^* \{ A T(n, t)x - Ax \} + \int_{\frac{[r_n t]}{r_n}}^t x^* A T(n, s) x \, ds.$$

From (3) $\{AT(n, s)x: 0 \le s \le T, n\}$ is bounded and so, $x^*AT(n, s)x$ is bounded measurable on [0, T]. Thus for any $t, t' \in [0, T]$ we have $(9) |x^*T(n, t)x - x^*T(n, t')x|$

$$\leq O(|t-t'|) + O(r_n^{-1}) + O\left(\left|\frac{\lfloor r_n t \rfloor}{r_n} - t\right|\right) + O\left(\left|\frac{\lfloor r_n t' \rfloor}{r_n} - t'\right|\right)$$

where O's depend only on $x \in D(A)$, $x^* \in X^*$ and T > 0.

It follows from (9) that $\{T(n_k, t)x_i\}_k$ becomes a Cauchy

sequence in the weak sense for each $t \ge 0$. Thus from (c) and (b), lim $T(n_k, t)x_i$ exists for each $t \ge 0$ and each *i*. Since $\{T(n, t)\}_n$ is equicontinuous, $\{T(n_k, t)x\}$ becomes a Cauchy sequence for each $t \ge 0$ and each $x \in D(A)$ (and consequently for each $x \in \overline{D(A)}$). Therefore lim $T(n_k, t)x$ exists for each $t \ge 0$ and $x \in \overline{D(A)}$. This convergence holds uniformly in t of every bounded interval [O, T].

We put $\lim T(n_k, t)x = T(t)x$ on $\overline{D(A)}$. Since $\{T(n_k, t)\}_k$ is equicontinuous on a metric space $\overline{D(A)}$, $T(n_k, t)$ converges continuously to T(t) on D(A) (see Rinow [6] p. 63). Take an arbitral s>0. Then since $\{T(n, t)\}$ is equicontinuous on $\overline{D(A)}$ in n and $t \in [0, s]$ from (2), it follows that $\{T(t)\}$ is equicontinuous on D(A) in $t \in [0, s]$.

Proof of the theorem. Letting $k \rightarrow \infty$ in (9), we have

 $|x^{*}(T(t)x - T(t')x)| \leq O(|t - t'|), \quad t \geq t' \geq 0, x \in D(A), x^{*} \in X^{*},$ where 0 depends on x and x^* and T>0. Since T is arbitral, T(t)x is weakly continuous in $t \ge 0$ and so, strongly continuous in Since $\{T(t)\}_{0 \le t \le T}$ is equicontinuous on $\overline{D(A)}$ from Lemma, $t \ge 0$. T(t)xis strongly continuous in $t \ge 0$ for each $x \in \overline{D(A)}$.

From (3), $\{AT(n_k, t)x\}_k$ is bounded for each $x \in D(A)$ and $t \ge 0$ and so, there exists a subsequence $AT(n_j, t)x$ converging to some element y(t). Thus from (ii), $T(t)x \in D(A)$ for each $t \ge 0$ and lim $AT(n_j, t)x = AT(t)x$. Here we may take the original sequence $\{n_k\}$ as this subsequence $\{n_i\}$. Since AT(t)x is bounded on every finite interval [0, T], again from (ii) it follows that AT(t)x is strongly continuous in $t \ge 0$. Therefore since X is sequentially complete, the Riemann integral $\int_{0}^{t} AT(s)x \, ds$ is defined in X for every $t \ge 0$. Thus letting $k \to \infty$ in (8), it follows from the dominated con-

vergence theorem and the abovementioned that

$$x^{*}(T(t)x-x) = \int_{0}^{t} x^{*}AT(s)x \, ds = x^{*} \int_{0}^{t} AT(s) \, x \, ds$$

for each $t \ge 0, x \in D(A)$ and each $x^* \in X^*$. Thus we have

$$T(t)x-x=\int_0^t A T(s)x\,ds, \qquad t\ge 0, x\in D(A).$$

Therefore T(t)x is strongly continuously differentiable and we have (7).

From the abovementioned, if $x \in D(A)$ then $T(t)x \in D(A)$ for all $t \ge 0$. Thus from the continuity of each T(t) on D(A), if $x \in \overline{D(A)}$ then $T(t)x \in \overline{D(A)}$ for all $t \ge 0$. Thus T(t) is a continuous mapping from $\overline{D(A)}$ into itself. Take any neighborhood V of 0 and $x \in D(A)$. Since $[r_n(s+t)] - [r_ns] - [r_nt] = \varepsilon$ is 0 or 1, we have T(n, s+t)x $-T(n, s)T(n, t)x \in V$ for all sufficiently large n. Since $\{T(n, t)\}_n$ is equicontinuous on $\overline{D(A)}$, the above estimate holds good for each $x \in \overline{D(A)}$. Thus from the convergence $T(n_k, t) \rightarrow T(t)$ on $\overline{D(A)}$ and the equicontinuity of $\{T(n_k, t)\}_k$, it follows that for each $x \in \overline{D(A)}$ and for all sufficiently large n_k , $T(s+t)x - T(s)T(t)x \in 4V$. Thus $\{T(t)\}_{t\geq 0}$ satisfies (4).

Finally, let A_0 be the infinitesimal generator of the above $\{T(t)\}$. Then clearly $A_0 \supseteq A$. If $A_0 \supseteq A$, then it can be proved that the topological inverse mapping of $I - h_0 A_0$ must be multiple valued, which contradicts to the fact that $I - h_0 A_0$ is injective.

References

- [1] Y. Kômura: Nonlinear semigroups in Hilbert space (to appear).
- [2] K. Kojima: On approximations for nonlinear Cauchy problems in locally convex spaces (to appear).
- [3] S. Ôharu: Note on the representation of semigroups of nonlinear operators. Proc. Japan Acad., 42 (10) (1966).
- [4] G. Köthe: Topologische Lineare Räume. Springer (1960).
- [5] R. E. Edwards: Functional Analysis. Holt, Rinehart and Winston (1965).
- [6] W. Rinow: Die Innere Geometrie der Metrischen Räume. Springer (1961).