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A groupoid is a set with a binary operation which need not be
associative. The group of all automorphisms of a groupoid G is
called the automorphism group of G and it is denoted by I(G).
Let (R)(G) denote the symmetric group on the set G. In [2 the
author determined the structure of G satisfying I(G)-(R)(G). This
paper supplements equivalent conditions to the theorem in case
GI>4, and adds some related results.

In [2 the author gave the following theorem.
Theorem 1. Let G be a groupoid. t(G)-(R)(G) if and only if

G is either isomorphic or anti-isomorphic onto one on the following
types"

(1.1) A right zero semigroup: xy-y for all x, y.
(1.2) The idempotent quasigroup of order 3.
(1.3) The groupoid {1, 2} of order 2 defined by

x.1-2, x.2-1 for x-1,2.
Before introducing the main theorem in this paper, we mention

some remarks on the terminology (see [1). We do not assume the
finiteness of G.

By a finite permutation of a set G we mean a permutation
of G such that the set {x e G; xx} is finite. A permutation

of G is called even if and only if is a finite permutation which
is the product of even number of substitutions (i.e. cycles of length
2). An odd permutation is defined in a similar way. Let be a
permutation group on G. Let k be a positive integer with k_-<l G 1.
g is called k-ply transitive if and only if for an arbitrary set of k
distinct elements a,..., a and for an arbitrary set of k distinct

for i- 1 kelements a,’ ..., a, there is e such that a?-a ,..,
Let (G) denote the group of all automorphisms and all anti-
automorphisms of G. I(G) is a subgroup of (G) and the index
of (G) in (G) is 2. Let (R)*(G) denote the group of all finite
permutations of G.

Theorem 2. Let G be a groupoid with GI4. Then the
following statements are equivalent.

(2.1) A groupoid G is isomorphic onto either a right zero
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semigroup or a left zero semigroup.
(2.2) (G) (R)(G).
(2.3) (G) (R)(G).
(2.4) (R)*(G)_(G).
(2.5) Every even permutation of G is contained in (G).
(2.6) (G) is triply transitive.
(2.7) Og(G) is doubly transitive and there is e (G) such that

af=a, b=b for some a, beG, a:/:b, but x:/:x for all x::/:a, x:/::b.

Proof. The proof will be done in the following direction.
(2.6)

(2i5) (2il) ’--2.7
(2.4) (2.2)j

(2.3)
(2.1)-(2.2) is given by Theorem 1; (2.2)-(2.3) and (2.3)-(2.4) are
obvious.

Proof of (2.4)--(2.5): By the assumption
3 (R)*(G)= (G) ’(G) where

oA’(G) (G)\(G), iG) (G) (R)*(G), ’(G)= ’(G) g (R)*(G),
clearly (G)::/: but I’(G) could be empty. Also

4 (R)*(G)-,_]t(G)U(G)
where (G) is the alternating group on G, namely, the group of
all even permutations on G, and .(G)=(R)*(G)\,I(G). Since both
(G) and (G) are) of index at most 2 in (R)*(G), they are normal
subgroups of (R)*(G), and (R)*(G)-,_.(G).OA(G). By the isomorphism
theorem

,_t(G)/,.(G) (G) (R)*(G)/(G)
Hence (G) contains a normal subgroup (G)(G). On the other
hand it is well known that /(G) is simple if GI_>_5 (see p. 71 1)
and that (G) I> 2 if G I>= 5. Consequently (G) (G) 0/(G) or
,t(G)_(G). Moreover it holds that (R)*(G)-I(G), or (R)*(G)_OI(G).

Proof of (2.5)-(2.6): Let a, a, a be arbitrary distinct elements
of G and b, b., b be also arbitrary distinct in G. Let T be a subset
of G such that IT I= m, 5___m<, and {a, a, a} (b, b., b}_ T. Let
(T) be the subgroup (of (R)(G)) consisting of all permutations which
fix each element outside T. (R)(T) is isomorphic with the symmetric
group of degree m. Let (T) be the alternative group in (R)(T).
it is known that (T) is (m-2)-ply transitive, hence triply

1) Strictly, (G) is of index at most 2, but (G) is of index 2.
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transitive. Hence there is e/(T) such that a=b(i=l, 2, 3).
Since (T)_I(G) by the assumption, we can find in I(G).
Thus we have (2.6).

Proof of (2.6)-(2.1): To prove the idempotency of G, suppose
a"=b and acb for some a, beG. Let a, b, c, be three distinct
elements of G. By the assumption there is an automorphism
of G such that a=a, b=c. Applying to a=b, we have a=c.
This is a contradiction since the binary operation is single-valued.
Therefore a=a for all a e G. Suppose ab=c for some a, b, c, acb,
ac, bc. Let dca, db, dec. Consider an automorphism with
ar=a, b=b, cr=d. Then transfers ab=e to ab=d. This is
also a contradiction. Hence we have proved ab=a or b.

If ab a, an automorphism (a, b, ...))\x,b,.’. bcx, carries ab-a to
xb-x, bcx" and then (x, b,..., xcy, carries xb=x to xy-x,

\x, y, /
Consequently we have xy=x for all x, y e G. Likewise ab=b implies
xy y for all x y e G.

Proof of (2.7)-(2.1): By the double transitivity of I(G), we
have a’-a for all a e G. By the assumption there is an automorphism
such that

a0 a0, b0 b0 for some a0, b0, a0 =/: b0
and no other elements of G are fixed. On the other hand

(aobo) (a0)(b0) aobo
which implies that aobo is either a0 or b0. By the same arguments
in the proof of (2.6)-(2.1), we have xy=x for all x, y e G. Similarly
aobo-bo implies xy-y for all x, y e G.

(2.2)-(2.7) is obvious.
Thus the proof of the theorem has been completed.
Remark. In case G 1=4, (2.1), (2.2), (2.6), and (2.7) are

equivalent, and (2.3), (2.5), and (2.8) below are equivalent:
(2.8) G is a right zero semigroup, or a left zero semigroup or

the idempotent quasigroup.) (see [3.)
In case ]G ]=3, (2.2), (2.6), (2.7), and (2.8) are equivalent.
Theorem :. Let S be a set with IS 1<=4. For every subgroup

(C) of (R)(S) there is at least one groupoid G defined on S such that
()=.

Theorem 3 is proved in [3 and the number of groupoids for
each g can by computed.

Combining Theorem 2 with Theorem 3, we have
Theorem 4. For each subgroup (C) of (R)(S) there is at least a

2) For convenience we use this notation although G need not be countable.
3) An idempotent quasigroup of order 4 or of order 3 is unique up to iso-

morphism.
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groupoid G defined on S such that 0I(G) if and only if IS 1<=4.
In fact there is no groupoid G for the alternating group 22 if

IG1>=5. If we admit the well ordering theorem, we have
Theorem 5. Let S be an infinite or finite set. There is a

groupoid G defined on S such that t(G) consists of the identica
mapping alone.

Poot. S can be well ordered, and let

_
be the ordering.

We define a binary operation on S as follows:
x.y- rain {x, y}

Then we can prove there is no automorphism except the identical
mapping by using the transfinite induction.

The following problem is raised:
Let S be a fixed set and be a permutation group on S, that

is, (C)_(R)(S). Under what condition on (C) and S does there exist a
groupoid G defined on S such that t(G)-(C)?

At the present time we can not completely solve this problem
but, by Theorem 2, it is necessary that (C) is not a triply transitive
proper subgroup of (R)(S).

Addendum. Let (2.5’) be the statement that (R)*(G)I(G). As
seen in the proof of (2.4)-*(2.5), we have also (2.4)-(2.5’), while
(2.5’)-(2.4) is obvious. Thus (2.5’) is also equivalent to each of
(2.1) through (2.7).
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