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A groupoid is a set with a binary operation which need not be
associative. The group of all automorphisms of a groupoid G is
called the automorphism group of G and it is denoted by (G).
Let &(G) denote the symmetric group on the set G. In [2] the
author determined the structure of G satisfying (G)=&(G). This
paper supplements equivalent conditions to the theorem in case
| G|>4, and adds some related results.

In [2] the author gave the following theorem.

Theorem 1. Let G be a groupoid. W(G)=S(G) if and only if
G 18 either isomorphic or anti-isomorphic onto one on the following
types:

1.1) A right zero semigroup: xy=y for all x,y.

(1.2) The idempotent quasigroup of order 3.

(1.3) The groupoid {1, 2} of order 2 defined by

x.1=2, 2-2=1 for =1, 2.

Before introducing the main theorem in this paper, we mention
some remarks on the terminology (see [1]). We do not assume the
finiteness of G.

By a finite permutation ¢ of a set G we mean a permutation
¢ of G such that the set {x € G; xp=+2} is finite. A permutation ¢
of G is called even if and only if ¢ is a finite permutation which
is the product of even number of substitutions (i.e. cycles of length
2). An odd permutation is defined in a similar way. Let © be a
permutation group on G. Let k be a positive integer with k|G |.
9 is called k-ply transitive if and only if for an arbitrary set of &
distinet elements a,, ---, a, and for an arbitrary set of % distinct
elements al, - - -, a}, there is ¢ € $ such that a;p=a; for ¢=1,..- k.
Let B(G) denote the group of all automorphisms and all anti-
automorphisms of G. 2A(GR) is a subgroup of B(G) and the index
of AG) in B(G) is 2. Let S*(G@) denote the group of all finite
permutations of G.

Theorem 2. Let G be a groupoid with |G|>4. Then the
following statements are equivalent.

(2.1) A groupoid G is isomorphic onto either a right zero
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semigroup or a left zero semigroup.

2.2) AWE=8(Q).

2.3) BGF)=6(G).

(2.4) S*G)=B(G).

(2.5) Every even permutation of G is contained in (G).

(2.6) W(@E) is triply transitive.

(2.7 (@) is doubly transitive and there is ¢ € 2(G) such that
ap=a, bp=>b for some a,be G, a*b, but xp+x for all x+a, x+b.

Proof. The proof will be done in the following direction.

(2.6)

/ \)
25) 3.1)
2.7)
(2.4) @2

(2.3)

(2.1)—(2.2) is given by Theorem 1; (2.2)—(2.3) and (2.3)—(2.4) are
obvious.

Proof of (2.4)—(2.5): By the assumption

(3) &*(G)=A(G)UW(G) where

A(G)=BG)\AG), UG =WG) NS*(G), W(@) =W (G)N&*(G),
clearly A(G)#¢ but W(G) could be empty. Also

(4) SX@=AG)UIBG)
where A(G) is the alternating group on G, namely, the group of
all even permutations on @, and B(G)=S*(G)\A(G). Since both
A(G) and A(G) are of index at most 2 in &*(G), they are normal
subgroups of &*(G), and &*(G)=A(G)-A(G). By the isomorphism
theorem

UG AG) N W) =&*(G)/AG) .

Hence /(G) contains a normal subgroup A(G)NA(G). On the other
hand it is well known that A(G) is simple if |G|=5 (see p. 71 [1])
and that | A(G)|>2 if |G|=5. Consequently JA(G)=AG)NAG) or
A(G)SWG). Moreover it holds that &*(G)=UG), or S*(G)=A(G).

Proof of (2.5)—(2.6): Let a,, a,, a, be arbitrary distinct elements
of G and b,, b,, b, be also arbitrary distinct in G. Let T be a subset
of G such that |T'|=m, 5<m<co, and {a,, as, as}U{b,, by, b} T. Let
&(T) be the subgroup (of &(G)) consisting of all permutations which
fix each element outside 7. ©&(T) is isomorphic with the symmetric
group of degree m. Let JA(T) be the alternative group in &(T).
It is known that A(T) is (m—2)-ply transitive, hence triply

1) Strictly, UA(G) is of index at most 2, but A(G) is of index 2.



No. 9] Groupoids and their Automorphism Groups 845

transitive. Hence there is ¢ e A(T) such that a;,0=0b,(1=1, 2, 3).
Since A(T)SWA(G) by the assumption, we can find ¢ in A(G).
Thus we have (2.6).

Proof of (2.6)—(2.1): To prove the idempotency of G, suppose
a*=b and a=#b for some a,beG. Let a,b, ¢, be three distinct
elements of G. By the assumption there is an automorphism ¢
of G such that ap=a, bp=c. Applying ¢ to a*=>b, we have a*=c.
This is a contradiction since the binary operation is single-valued.
Therefore a*=a for all aeG. Suppose ab=c¢ for some a, b, ¢, a b,
a#c¢,b#c. Let d+a,d+b, d+#c. Consider an automorphism ¥ with
a¥l =a, b¥ =0, c¥=d. Then ¥ transfers ab=¢ to ab=d. This is
also a contradiction. Hence we have proved ab=a or b.

cee\2 .
If ab=a, an automorphism a, b, , b#wx, carries ab=a to
b, eee

xb=wx, b#x; and then (ﬁ’ b, 7)), @£y, carries ab=u to xy=uw, T+#y.
Consequently we have xy’zz’v for all x, y ¢ G. Likewise ab=>b implies
xy=y for all z,y € @G.

Proof of (2.7)—(2.1): By the double transitivity of (&), we
have a*=a for all a € G. By the assumption there is an automorphism
¢ such that

a0 =y, byp=">, for some a,, b,, a,#b,
and no other elements of G are fixed. On the other hand
(@bo)e = (@e)(bo) = by

which implies that a.b, is either a, or b,. By the same arguments
in the proof of (2.6)—(2.1), we have xy=x for all 2, y € G. Similarly
ab,=b, implies xy=y for all z, ycG.

(2.2)—(2.7) is obvious.

Thus the proof of the theorem has been completed.

Remark. In case | G|=4, (2.1), (2.2), (2.6), and (2.7) are
equivalent, and (2.8), (2.5), and (2.8) below are equivalent:

(2.8) G is a right zero semigroup, or a left zero semigroup or
the idempotent quasigroup.” (see [37.)

In case |G|=3, (2.2), (2.6), (2.7), and (2.8) are equivalent,

Theorem 3. Let S be a set with |S|<4. For every subgroup
D of &(S) there is at least one groupoid G defined on S such that
WE=9.

Theorem 3 is proved in [3] and the number of groupoids for
each  can by computed.

Combining Theorem 2 with Theorem 3, we have

Theorem 4. For each subgroup O of S(S) there is at least a

2) For convenience we use this notation although G need not be countable.
3) An idempotent quasigroup of order 4 or of order 8 is unique up to iso-
morphism.
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groupoid G defined on S such that WG)=9 if and only if |S|=4.

In fact there is no groupoid G for the alternating group o if
|G|=5. If we admit the well ordering theorem, we have

Theorem 5. Let S be an infinite or finite set. There is a
groupoid G defined on S such that W(G) consists of the identical
mapping alone.

Proof. S can be well ordered, and let < be the ordering.
We define a binary operation on S as follows:

x-y= min {z, y}
Then we can prove there is no automorphism except the identical
mapping by using the transfinite induction.

The following problem is raised:

Let S be a fixed set and  be a permutation group on S, that
is, $<&(S). Under what condition on  and S does there exist a
groupoid G defined on S such that A(G)=9H?

At the present time we can not completely solve this problem
but, by Theorem 2, it is necessary that © is not a triply transitive
proper subgroup of &(S).

Addendum. Let (2.5") be the statement that &*(G)CA(G). As
seen in the proof of (2.4)—(2.5), we have also (2.4)—(2.5’), while
(2.5")—(2.4) is obvious. Thus (2.5') is also equivalent to each of
(2.1) through (2.7).
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