183. An Important Relation in Homotopy Groups of Spheres

By Hirosi Toda
Department of Mathematics, Kyoto University, Kyoto

(Comm. by Zyoiti Suetuna, m.J.a., Nov. 13, 1967)

1. In computing the p-primary component ${ }_{p} G_{k}$ of the k-stem group $G_{k}=\lim \pi_{n+k}\left(S^{n}\right), p$ denoting always an odd prime, an essential difficulty lies in the case $k=2 p^{2}(p-1)-3$. Recently, Cohen [1] has announced that ${ }_{p} G_{2 p^{2}(p-1)-3} \approx Z_{p}$, which is equivalent to say that $\alpha_{1} \beta_{1}^{p} \neq 0$ for the generators α_{1} of ${ }_{p} G_{2 p-3}$ and β_{1} of ${ }_{p} G_{2 p(p-1)-2}$. The result of the present work, however, does not agree with this announcement. Our fundamental result is

Theorem. For sufficiently large integer n, there exists a cell complex

$$
K=S^{n} \cup e^{n+2\left(p^{2}-1\right)(p-1)-1} \cup e^{n+2 p^{2}(p-1)-1} \cup e^{n+2 p^{2}(p-1)}
$$

such that $\mathfrak{S}_{p^{p}} H^{n}\left(K ; Z_{p}\right) \neq 0, \Delta \mathfrak{P}^{1} H^{n+2\left(p^{2}-1\right)(p-1)-1}\left(K ; Z_{p}\right) \neq 0$ and the cell $e^{n+2\left(p^{2}-1\right)(p-1)-1}$ is attached to S^{n} by a representative of β_{1}^{n}.

It follows immediately the following
Corollary. $\quad \alpha_{1} \beta_{1}^{p}=0$.
This shows that, in the Adams' spectral sequence computed by May [2], the differential cancells $h_{0} b^{p}$ with b_{1}, or equivalently, the element γ of ${ }_{p} G_{2 p^{2}(p-1)-2}$ does not exist and should be cancelled with $\alpha_{1} \beta_{1}^{p}$. Then the corrected results for ${ }_{p} G_{k}$ are stated as follows:

Proposition 1. For $k<2\left(p^{2}+2 p\right)(p-1)-4,{ }_{p} G_{k}$ is the direct sum of cyclic groups generated by the following elements of corresponding degree k :

$$
\begin{aligned}
& \alpha_{i}\left(1 \leq i<p^{2}+2 p, i \not \equiv 0(\bmod p)\right), \quad \alpha_{j p}^{\prime}(1 \leq j<p+2, j \not \equiv 0(\bmod p)), \\
& \alpha_{p^{\prime}}^{\prime \prime}, \beta_{1}^{r}(1 \leq r<p+3), \quad \alpha_{1} \beta_{1}^{r}(1 \leq r<p), \\
& \beta_{1}^{r} \beta_{s}, \alpha_{1} \beta_{1}^{r} \beta_{s}(0 \leq r, 2 \leq s<p, r+s<p+2), \quad \beta_{2} \beta_{p-1}, \alpha_{1} \beta_{2} \beta_{p-1}, \\
& \varepsilon_{i}(1 \leq i<p), \alpha_{1} \varepsilon_{i}(1 \leq i<p-2), \varepsilon^{\prime}, \beta_{1} \varepsilon^{\prime}, \varphi,
\end{aligned}
$$

where $\operatorname{deg}\left(\alpha_{i}\right)=2 i(p-1)-1, \operatorname{deg}\left(\alpha_{j p}^{\prime}\right)=2 j p(p-1)-1, \operatorname{deg}\left(\alpha_{p^{2}}^{\prime \prime}\right)=2 p^{2}(p-1)$ $-1, \operatorname{deg}\left(\beta_{s}\right)=2(s p+s-1)(p-1)-2, \operatorname{deg}\left(\varepsilon_{i}\right)=2\left(p^{2}+i\right)(p-1)-2, \operatorname{deg}\left(\varepsilon^{\prime}\right)$ $=2\left(p^{2}+1\right)(p-1)-3, \operatorname{deg}(\varphi)=2\left(p^{2}+p\right)(p-1)-3$. The orders of $\alpha_{j p}^{\prime}, \alpha_{p^{2}}^{\prime \prime}$ and φ are p^{2}, p^{3}, and p^{2} respectively, and the other generators are of order p. We mention that ε^{\prime} corresponds to $\alpha_{1} \gamma$ in [2], $\alpha_{1} \varepsilon_{i}$ to $\alpha_{i+1} \gamma$, and $\beta_{1} \varepsilon^{\prime}$ to $\alpha_{1} \beta_{1} \gamma$. The following representations of new generators are given:

$$
\begin{array}{rlrl}
\varepsilon^{\prime} & =\left\{\beta_{1}^{p}, \alpha_{1}, \alpha_{1}\right\}, & \varepsilon_{1}=\left\{\alpha_{1}, \beta_{1}^{p}, p \iota, \alpha_{1}\right\}, \\
\varepsilon_{i+1} & =\left\{\varepsilon_{i}, p \iota, \alpha_{1}\right\}, & & 1 \leq i<p-1, \quad \varphi \in\left\{\varepsilon_{p-2}, \alpha_{1}, \alpha_{1}\right\} .
\end{array}
$$

Among several relations, we remark the following ones:

$$
\begin{aligned}
& p \cdot \varphi=\varepsilon_{p+1} \alpha_{1} \\
& \text { if } \left.p=3, \alpha_{1} \varepsilon^{\prime}=\beta_{1}^{4}, \beta_{1}^{2} \varepsilon=0 \text {, and } \beta_{1}^{6}=0 \quad \text { (if } p>3, \alpha_{1} \varepsilon^{\prime}=0\right) .
\end{aligned}
$$

Then the first one of our unsolved problem is whether $\beta_{1}^{p} \beta_{2}=0$?
The results of the proposition can be computed from the unstable groups, by use of the results [3] on iterated suspensions, and the groups ${ }_{p} \pi_{n+k}\left(S^{n}\right)$ are completely determined for $k<2\left(p^{2}+2 p\right)(p-1)-4$. The details are too long to describe here. Some parts of the results will be noted in the last section. In a mineographed note, Gray has also computed unstable groups for the case $p=3$, using a relations $\left\{\alpha_{1}, p \iota, \beta_{2}\right\}=0$. But, our results imply $\left\{\alpha_{1}, p \iota, \beta_{2}\right\}= \pm \beta_{1}^{3}$, and his results will be corrected and coincide with ours if one uses the new relation.
2. The proof of the theorem is based on the following two lemmas. We denote by $\Delta_{p}\left(x_{i}\right)$ an algebra over Z_{p} which has a Z_{p} basis $x_{i_{1}}^{a_{1}} \cdots x_{i_{j}}^{a_{j}}, 0 \leq a_{1}, \cdots, a_{j}<p$. For example, as the dual of $H_{*}\left(\Omega S^{2 n+1} ; Z_{p}\right)=Z_{p}[a]$ we have $H^{*}\left(\Omega S^{2 n+1} ; Z_{p}\right)=\Delta_{p}\left(a_{i}\right), \operatorname{deg}\left(a_{i}\right)=2 n p^{i-1}$, $i=1,2, \cdots$, and $H^{*}\left(\Omega^{2} S^{2 n+1} ; Z_{p}\right)=\Lambda\left(a, \Delta b_{1}, \Delta c_{1}, \cdots\right) \otimes \Delta_{p}\left(b_{1}, b_{2}, \cdots, c_{1}, \cdots\right)$, where $\quad \Delta=\delta / p, \operatorname{deg}\left(b_{1}\right)=2 n p-2, \operatorname{deg}\left(b_{2}\right)=2 n p^{2}-2 p, \operatorname{deg}\left(c_{1}\right)=2 n p^{2}-2$. Next, consider a $(2 m+1)$-sphere bundle $B_{m}(p)$ over $S^{2 m+2 p-1}$ having α_{1} as its characteristic class. The loop-space $\Omega B_{m}(p)$ has the cohomology ring $H^{*}\left(\Omega B_{m}(p) ; Z_{p}\right)=\Delta_{p}\left(a_{i}, b_{i}\right)$, where deg $\left(a_{i}\right)=2 m p^{i-1}$, $\operatorname{deg}\left(b_{i}\right)=2(m+p-1) p^{i-1}$, and $\mathfrak{P}^{1} a_{1}=b_{1}$. Then we have:

Lemma 1. In $H^{*}\left(\Omega B_{m}(p) ; Z_{p}\right)$, the relation $\mathfrak{P}_{p^{p i-1}} a_{i}=b_{i}$ holds for sufficiently large m (e.g., $m>p^{i-1}(p-1)$).

Lemma 2. In $H^{*}\left(\Omega^{2} S^{2 n+1} ; Z_{p}\right)$, we have $\mathfrak{P}^{1} b_{2} \neq 0$.
The first lemma is proved by use of p-fold iterated loop multiplication $\quad \mu_{p}:\left(\Omega B_{m}(p)\right)^{p} \rightarrow B_{m}(p) . \quad \mu_{p}^{*}\left(a_{i}\right), i>1$, has a term $a_{i-1} \otimes \cdots \otimes a_{i-1}$. By the naturality of $\mathfrak{P}^{p^{i-1}}$ and by Cartan's formula, we have, under inductive assumption, that $\mu_{p}^{*}\left(\mathfrak{P}^{p^{i-1}} a_{i}\right)$ and $\mu_{p}^{*}\left(b_{i}\right)$ have the same term $b_{i-1} \otimes \cdots \otimes b_{i-1}$. Then the first lemma is proved.

To prove the second lemma, we consider a fibre $Q_{2}^{2 n-1}$ of a fibering equivalent to the canonical inclusion $S^{2 n-1} \subset \Omega^{2} S^{2 n+1}$. Then $H^{*}\left(Q_{2}^{2 n-1} ; Z_{p}\right)=\Lambda\left(b_{1}^{\prime}, \Delta d^{\prime}, c_{1}^{\prime}, \cdots\right) \otimes \Delta_{p}\left(\Delta b_{1}^{\prime}, d^{\prime}, e, \Delta c_{1}^{\prime}, \cdots\right)$, where the transgression τ carries $\tau\left(b_{1}^{\prime}\right)=b_{1}, \tau\left(\Delta d^{\prime}\right)=b_{2}, \tau\left(c_{1}^{\prime}\right)=c_{1}$, and $\operatorname{deg}(e)$ $=2 n p^{2}-2 p$. Thus it is sufficient to prove $\Delta \mathfrak{S}^{1} \Delta d^{\prime}=\Delta c_{1}^{\prime}$ in $Q_{2}^{2 n-1}$. In $\S 9$ of [3], we have a sequence of fiberings:

$$
\Omega Q_{n} \xrightarrow{d} Q_{n}^{\prime} \longrightarrow Q_{2}^{2 n-1} \longrightarrow Q_{n}
$$

with natural isomorphisms $H^{*}\left(Q_{n} ; Z_{p}\right) \approx H^{*}\left(\Omega^{3} S^{2 n p+1} ; Z_{p}\right), H\left(\Omega Q_{n} ; Z_{p}\right)$ $\approx H^{*}\left(\Omega^{4} S^{2 n p+1}, Z_{p}\right), H^{*}\left(Q_{n}^{\prime} ; Z_{p}\right) \approx H^{*}\left(\Omega^{2} S^{2 n p-1} ; Z_{p}\right)$. Furthermore, Lemma 9.2 of [3] indicates that the functional $\Delta \mathfrak{S}^{1} \Delta$-operation for d is not trivial, i.e., $\Delta \Re^{1} \Delta\left(d^{\prime}\right) \neq 0$ in $Q_{2}^{2 n-1}$. This prove the second Lemma.

Proof of the theorem. Take m sufficiently large and $n=m+p-1$.

Consider the following sequence of fiberings:

$$
\Omega^{2} S^{2 m+2 p-1} \xrightarrow{\Omega f} \Omega S^{2 m+1} \longrightarrow \Omega B_{m}(p) \longrightarrow \Omega S^{2 \dot{m}+2 p-1} \xrightarrow{f} S^{\ell m+1} .
$$

Lemma 1 implies that the functional $\mathfrak{P}^{p^{i}}$-operation associated with the mapping Ω^{f} is not trivial on $H^{2 m p^{i}}\left(\Omega S^{2 m+1} ; Z_{p}\right) . \Omega S^{2 m+1}$ is homotopy equivalent to the reduced product complex $S_{\infty}^{2 m}=\Sigma_{i \geq 0} e^{2 m i}$. For $\Omega^{2} S^{2 m+2 p-1}$, we choose a $C W$-complex L and a mapping $g: L \rightarrow \Omega^{2} S^{2 m+2 p-1}$ such that L consists of cells corresponding to each \boldsymbol{Z}_{p}-basis of $H^{*}\left(\Omega^{2} S^{2 m+2 p-1} ; Z_{p}\right)$ and that g induces an isomorphism of $H^{*}\left(Z_{p}\right)$. L has a form

$$
S^{a} \cup e^{b} \cup e^{b+1} \cup \cdots \cup e^{c-2 p} \cup e^{c} \cup e^{c+1} \cup e^{c-2 p+1} \cup \cdots
$$

for $a=2 m+2 p-3, b=2 m p+2 p(p-1)-2, c=2 m p^{2}+2 p^{2}(p-1)-2$. Consider a cellular map $h: L \rightarrow S^{2 m}$ homotopic to the composition $\Omega f \circ g$. Clearly, $h \mid S^{a}$ represents α_{1}. By smashing subcomplexes, h defines $h_{1}: L^{b+1} / L^{a} \rightarrow S^{2 m p}$. Since the functional \mathfrak{S}^{p}-operation associated with Ωf, hence with h and h_{1}, is not trivial, we have $\mathfrak{S}^{p} \neq 0$ in a mapping cone $S^{2 m p} \cup e^{b+1} \cup e^{b+2}$ of h_{1}. By the triviality of $\bmod p$ Hopf invariant, $h_{1} \mid S^{b}$ represents β_{1}, up to non-zero coefficient. Similarly, we have a mapping $h_{2}: S^{c-2 p+2} \cup e^{o} \cup e^{c+1} \rightarrow S^{2 m p^{2}}$ such that the mapping cone of h_{2}, say K, satisifies $\mathfrak{P}^{p^{2}} \neq 0$. From Lemma 2, the fact $\Delta \Re^{1} H^{c-2 p+3}\left(K ; Z_{p}\right) \neq 0$ follows. Finally, using the H-structure of the mapping Ωf, we can prove easily that $h_{2} \mid S^{c-2 p+2}$ represents β_{1}^{p}. This completes the proof of the theorem.
3. For each element γ of G_{k}, we define the unstability $u(\gamma)$ of γ by $u(\gamma)=\operatorname{Min}\left\{n \mid \gamma \in\right.$ image of $\left.S^{\infty}: \pi_{n+k}\left(S^{n}\right) \rightarrow G_{k}\right\}$.
Proposition 2. Except β_{1}, each generators, say $\gamma \in{ }_{p} G_{k}$, listed in Proposition 1 is the S^{∞}-image of an element $\gamma^{\prime} \in \pi_{u(\gamma)+k}\left(S^{u(\gamma)}\right)$ such that γ and γ^{\prime} have the same order. The same is true for $\gamma=p \alpha_{j p}^{\prime}, p \alpha_{p^{2}}^{\prime \prime}, p^{2} \alpha_{p^{2}}^{\prime \prime}$, and $p \varphi$.

This proposition allows us the following direct sum decomposition:

$$
{ }_{p} \pi_{2 m+1+k}\left(S^{2 m+1}\right)=S(m, k)+U(m, k)
$$

for

$$
k \neq 2 p(p-1)-2
$$

and

$$
k<2\left(p^{2}+2 p\right)(p-1)-4,
$$

where $S(m, k)$ is mapped monomorphically into ${ }_{p} G_{k}$ by S^{∞}, and $U(m, k)=\operatorname{Ker} S^{\infty}$. As an analogy of Theorem 11.1 of [3], it is possible to classify the generators of $U(m, k)$, but we need much more types. For example, the composition $\alpha_{1} \beta_{1}^{p}$ gives a quite long series of unstable elements ($1 \leq m<p^{2}-2$). Here, we note only the unstability of new stable generators:

$$
\begin{aligned}
& u\left(\alpha_{p^{2}}^{\prime \prime}\right)=7, \quad u\left(\varepsilon^{\prime}\right)=2(p-2) p+1, \quad u\left(\varepsilon_{i}\right)=2(p-i) p+3 \quad(1 \leq i<p-1), \\
& u\left(\alpha_{1} \varepsilon_{i}\right)=2(p-i-2) p+1 \quad(1 \leq i<p-2), \\
& u\left(\varepsilon_{p-1}\right)=\left\{\begin{array}{ll}
2 p+3 & (p>3) \\
11 & (p=3),
\end{array} \quad u\left(\beta_{1}^{p+1}\right)=\left\{\begin{array}{ll}
2 p-1 & (p>3) \\
3 & (p=3),
\end{array} \quad u\left(\beta_{1}^{p+2}\right)=2 p-3,\right.\right. \\
& u(\varphi)=\left\{\begin{array}{lll}
7 & (p>3) & u(p \cdot \varphi)=\left\{\begin{array}{ll}
5 & (p>3) \\
9 & (p=3),
\end{array} \quad(p=3),\right.
\end{array}\right. \\
& u\left(\beta_{2} \beta_{p-1}\right)=u\left(\beta_{1}^{r} \beta_{s}\right)=2 p-1, \quad u\left(\alpha_{1} \beta_{2} \beta_{p-1}\right)=u\left(\alpha_{1} \beta_{1}^{r} \beta_{s}\right)=3 \quad(r>0) .
\end{aligned}
$$

References

[1] J. M. Cohen: Some results on the stable homotopy groups of spheres. Bull. A. M. S., 72(4), 732-735 (1966).
[2] J. P. May: The cohomology of restricted Lie algebras and of Hopf algebras. Application to the Steenrod algebra. Thesis, Princeton (1964).
[3] H. Toda: On iterated suspensions. I. J. Math., Kyoto Univ., 5, 87-142 (1965). Ditto. II. Ibid, 5(3), 209-250 (1966). Ditto. III (to appear).

