No. 10]

209. Note on Inverse Images under Open Finite-to-One Mappings

By Akihiro OKUYAMA Osaka Kyoiku University (Comm. by Kinjirô Kunugi, M.J.A., Dec. 12, 1967)

1. Introduction and theorems. Recently, A. Arhangel'skii [2] proved the following result:

A completely regular T_2 space which is the inverse image of a metric space under an open-closed finite-to-one mapping¹ is metrizable. Also, in the same paper he showed that the inverse image of a compact metric space under an open finite-to-one mapping needs not be metrizable.²

Hence, we shall consider the metrizability of it adding some assumptions and obtain the following result:

Theorem 1. If f is an open finite-to-one mapping of a normal, locally compact T_2 space X onto a metric space Y, then X is metrizable.

On the other hand, in [8] we introduced and discussed the notion of spaces with σ -locally finite nets³⁾ as a class of topological spaces containing all metric spaces. As for the space with a σ -locally finite net, the following holds:

Theorem 2. Let f be an open finite-to-one mapping of a normal T_2 space X onto a collectionwise normal T_2 space with a σ -locally finite net. Then X has a σ -locally finite net.

If we combine Theorem 2 with the notion of *M*-space (cf. [7]), we can obtain the another proof of the above Arhangel'skii's theorem and a generalization of it:

Theorem 3. Let f be an open finite-to-one mapping of a normal T_2 space X onto a collectionwise normal T_2 space Y with a σ -locally finite net and g a closed mapping of X onto a metric space Z such that $g^{-1}(z)$ is countably compact for each $z \in Z$. Then X is metrizable.

In the following we shall prove Theorems 2, 1, and 3 using some lemmas, and construct an example of a non-metrizable hereditarily

¹⁾ In this note we consider only continuous mapping.

²⁾ The description of his example seems to contain some inaccuracies.

³⁾ A collection \mathfrak{B} of (not necessarily open) sets of a topological space X is called a *net* for X if, whenever $x \in U$ with x a point and U open in X, then $x \in B \subset U$ for some $B \in \mathfrak{B}$ (cf. [6], [3]). A net which is a union of countably many locally finite collections is called a σ -locally finite net (cf. [8]).

paracompact space which is the inverse image of a compact metric space under an open, order $\leq 2^{4}$ mapping.

2. Lemmas. Lemma 1. Let f be an open mapping of a locally compact space X onto a T_2 space Y. Then Y is also locally compact.

Lemma 2. Let X be a countable union of subspaces of X, each of which is Lindelöf. Then X is also Lindelöf.

Since these two lemmas are almost clear, we omit the proofs. The following is due to Arhangel'skii [1].

Lemma 3. Let f be an open finite-to-one mapping of a T_2 space X onto a T_2 space Y and $Y_n = \{y \mid y \in Y, |f^{-1}(y)| = n\}, X_n = f^{-1}(Y_n)$ for $n = 1, 2, \cdots$. Then $f_n = f \mid X_n$ is a locally homeomorphic, perfect⁵ mapping of X_n onto Y_n .

3. Proofs. Proof of Theorem 2. Let us put Y_n, X_n , and f_n as in Lemma 3 for $n=1, 2, \cdots$. Since Y is hereditarily paracompact (cf. [8], Theorem 2.9) and Y_n has also a σ -locally finite net for $n=1, 2, \cdots$ (cf. [8] Theorem 2.1), Y_n is a paracompact space with a σ -locally finite net for $n=1, 2, \cdots$. Since f_n is a locally homeomorphic, perfect mapping by Lemma 3, X_n is also a paracompact space with a σ -locally finite net $\mathfrak{B}^n = \bigcup_{m=1}^{\infty} \mathfrak{B}^n$ (cf. [8], Theorem 2.5), where we can assume $\mathfrak{B}^n_m \subset \mathfrak{B}^n_{m+1}$ for $m=1, 2, \cdots$. Let $Y'_n = \bigcup_{i=1}^n Y_i$ and $X'_n = f^{-1}(Y'_n)$. Then Y'_n is closed in Y. Since Y is perfectly normal (cf. [8], Theorem 2.8), we have $Y'_n = \bigcap_{i=1}^{\infty} G_i^n$ where G_i^n is an open set of Y such that $G_i^n \supset G_{i+1}^n$ for $i=1, 2, \cdots$. Put $H_i^n = f^{-1}(G_i^n)$ for $i=1, 2, \cdots$. Then $X'_n = \bigcap_{i=1}^{\infty} H^n_i$. Now we put $\mathbb{C}^n_m = \mathfrak{B}^n_m \cap (X-H^{n-1}_m)$ for $m=1, 2, \cdots; n=1, 2, \cdots$ where $H^0_m = \phi$ for $m=1, 2, \cdots$, and $\mathfrak{C} = \bigcup_{m=1}^{\infty} \mathfrak{C}_{m}^{n}$. Then \mathfrak{C} is a σ -locally finite net for X. That is; since $H_m^{\frac{m}{n-1}}$ is open in X and X'_n is closed in X and, moreover, \mathfrak{B}_m^n is locally finite in X'_n , \mathbb{G}^n_m is a locally finite collection in X for $m=1, 2, \cdots$, $n=1, 2, \cdots$. Therefore, \mathbb{C} is a σ -locally finite collection in X. For an arbitrary point x of X and an arbitrary open set U of X containing x let n be the smallest number such as $x \in X'_k$ and m the smallest number such as $x \notin H_m^{n-1}$. Then $x \in X_n$. Since \mathfrak{B}^n is a net for X_n , there is an l such that $x \in B \subset U \cap X_n$ for some $B \in \mathfrak{B}_l^m$. Put $k = \max\{m, l\}$. Then we have $x \in (B - H_k^{n-1}) \subset U$ by the assumptions that $\mathfrak{B}_m^n \subset \mathfrak{B}_k^n$ and $H_m^{n-1} \supset H_k^{n-1}$. This shows that \mathfrak{C} is a net for X, completing the proof of Theorem 2.

⁴⁾ $Order \leq 2$ of a mapping $f: X \to Y$ means $|f^{-1}(y)| \leq 2$ for each $y \in Y$, where $|f^{-1}(y)|$ is a cardinal number of $f^{-1}(y)$.

⁵⁾ A closed mapping f of a space X onto a space Y is called *perfect* if $f^{-1}(y)$ is compact for each $y \in Y$.

No. 10]

Proof of Theorem 1. Since Y is a locally compact metric space by Lemma 1, there exists a discrete collection $\{Y_{\alpha} \mid \alpha \in \mathfrak{A}\}$ which is a closed covering of Y and, each of which is a countable union of compact metric subspaces $K_{\alpha n}$ $(n=1, 2, \dots)$, therefore, separable metric subspaces. When we put $X_{lpha} \!=\! f^{-1}(Y_{lpha})$ for each $\alpha \in \mathfrak{A}$, we have that X is a discrete sum of $\{X_{\alpha} \mid \alpha \in \mathfrak{A}\}$. Hence, it is sufficient to show that each X_{α} is metrizable. Now, let α be a fixed element of \mathfrak{A} . Since $f | X_{\alpha}$ is an open finite-to-one mapping of X_{α} onto Y_{α} , by Lemma 3 we have that $Y_{\alpha} = \bigcup_{n=1}^{\infty} Y_{\alpha n}, X_{\alpha} = \bigcup_{n=1}^{\infty} X_{\alpha n}$ and $f \mid X_{\alpha n}$ is a locally homeomorphic, perfect mapping. Since $Y_{\alpha n}$ is separable metric and $f \mid X_{\alpha n}$ is perfect for $n = 1, 2, \dots, X_{\alpha n}$ is a Lindelöf space for $n = 1, 2 \cdots$ (cf. [4]). Hence, X_{α} is a Lindelöf space by Lemma 2, therefore, paracompact space (cf. [5]). Since a compact space is an *M*-space and X_{α} is locally compact, X_{α} is a paracompact, locally M-space and, moreover, a space with a σ -locally finite net by Theorem 2. Therefore, X_{α} is metrizable (cf. [8], Theorem 3.7), completing the proof of Theorem 1.

Proof of Theorem 3. Using f, X is a space with a σ -locally finite net by Theorem 2. Using g, X is an *M*-space (cf. [7]). Hence, X is a normal T_2 *M*-space with a σ -locally finite net, therefore, metrizable (cf. [8], Theorem 3.6).

4. Example. Let A_0, A_1, A_2, \cdots be subsets of Euclidean plane R^2 such that $A_0 = \{(x, y) \mid -1 \leq x, y \leq 0\}$ and

$$A_n = \{(0,0)\} \cup \left\{(x, y) \middle| 0 < x, y < 1, \frac{1}{2n+1} x < y < \frac{1}{2n} x \right\}$$

for $n=1, 2, \dots$, and $X = \bigcup_{n=0}^{\infty} A_n$. Let us define the topology of X as follows: G is open in X if and only if $G \cap A_n$ is open in A_n as a subspace of R^2 for each n. Since X does not satisfy the first countable axiom at (0, 0), X is not matirzable. Let $Y = A_0$ be a subspace of R^2 and f a mapping of X onto Y such that

$$f((x, y)) = \begin{cases} (x, y) & \text{if } (x, y) \in A_0 \\ (-x, y) & \text{if } (x, y) \in \bigcup_{n=1}^{\infty} A_n \end{cases}.$$

Then it is easily seen that f is an open, order ≤ 2 mapping of a non-metrizable, hereditarily paracompact space X onto a compact metric space Y.

References

 A. Arhangel'skii: A criterion for the existence of a bicompact element in a continuous decomposition. A theorem on the invariance of weight under open-closed finite-to-one mappings. Dokl. Akad. Nauk S.S.S.R., 166 (1966). Soviet Math. Dokl., 7, 249-253 (1966).

A. OKUYAMA

- [2] A. Arhangel'skii: A theorem on the metrizability of the inverse image of a metric space under an open-closed finite-to-one mapping. Example and unsolved problem. Dokl. Akad. Nauk S.S.S.R., 170 (1966). Soviet Math. Dokl., 7, 1258-1262 (1966).
- [3] ——: On closed mappings, bicompact spaces, and a problem of P. Alexandrov. Pacific J. Math., **18**, 201-208 (1966).
- [4] S. Hanai: Inverse images of closed continuous mappings. I. Proc. Japan Acad., 37, 298-301 (1961).
- [5] E. Michael: A note on paracompact spaces. Proc. Amer. Math. Soc., 4, 831-838 (1953).
- [6] ——: X_0 -spaces. J. Math. Mech., 15, 983-1002 (1966).
- [7] K. Morita: Product of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [8] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and product spaces (to appear).