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1. Introduction and theorems. Recently, A. Arhangel’skii [2
proved the following result:

A completely regular T2 space which is the inverse image of
a metric space under an open-closed finite-to-one mapping" is
metrizable. Also, in the same paper he showed that the inverse
image of a compact metric space under an open finite-to-one
mapping needs not be metrizao

Hence, we shall consider the metrizability of it adding some
assumptions and obtain the following result:

Theorem 1. If f is an open finite-to-one mapping of a
normal, locally compact T2 space X onto a metric space Y, then
X is metrizable.

On the other hand, in [8 we introduced and discussed the
notion of spaces with a-locally finite nets) as a class of topological
spaces containing all metric spaces. As for the space with a a-locally
finite net, the following holds:

Theorem 2. Let f be an open finite-to-one mapping of a
normal T space X onto a collectionwise normal T space with
a a-locally finite net. Then X has a a-locally finite net.

If we combine Theorem 2 with the notion of M-space (cf. [7),
we can obtain the another proof of the above Arhangel’skii’s theorem
and a generalization of it"

Theorem 3. Let f be an open finite-to-one mapping of a
normal T. space X onto a collectionwise normal T space Y with
a a-locally finite net and g a closed mapping of X onto a metric
space Z such that g-l(z) is countably compact for each z eZ.
Then X is metrizable.

In the following we shall prove Theorems 2, 1, and 3 using some
lemmas, and construct an example of a non-metrizable hereditarily

1) In this note we consider only continuous mapping.
2) The description of his example seems to contain some inaccuracies.
3) A collection of (not necessarily open) sets of a topological space X is

called a net for X if, whenever x U with x a point and U open in X, then
xBU for someB (cf. 6, 3). A net which is a union of countably many
locally finite collections is called a a-locally finite net (cf. [8).
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paracompact space which is the inverse image of a compact metric
space under an open, order<=2) mapping.

2. Lemmas. Lemma 1. Let f be an open mapping of a
locally compact space X onto a T. space Y. Then Y is also
locally compact.

Lemma 2. Let X be a countable union of subspaces of X,
each of which is LindelYf. Then X is also LindelYf.

Since these two lemmas are almost clear, we omit the proofs.
The following is due to Arhangel’skii [1.
Lemma :. Let f be an open finite-to-one mapping of a T

space X onto a T. space Y and Y-{YlY e Y, If-(y)l-n},
X-f-( Y,) for n-l, 2, .... Then f-f X is a locally homeo-
morphic, perfect) mapping of X onto Y.

:. Proofs. Proof of Theorem 2. Let us put Y, X, and f.
as in Lemma 3 for n-1, 2, .... Since Y is hereditarily paracompact
(cf. [8, Theorem 2.9)and Y. has also a a-locally finite net for
n-l, 2,... (cf. [8 Theorem 2.1), Y is a paracompact space with
a a-locally finite net for n-l, 2,.... Since f is a locally homeo-
morphic, perfect mapping by Lemma 3, X. is also a paracompact
space with a a-locally finite net ’-U " (cf. [8, Theorem 2.5),
where we can assume !+ for m-l, 2, .... Let Y’-. Y
and X;=f-(Y’). Then Y; is closed in Y. Since Y is perfectly
normal (cf. [8, Theorem 2.8), we have Y’- G where G? is an

open set of Y such that G G+ for i-l, 2,.... Put H.=f (G)
for i-1,2,... Then X’-H. Now we put
for m-l, 2,...;n-l, 2,... where H- for m-1,2,..., and
E- U E. Then E is a a-locally finite net for X. That is; since

H- is open in X and X’ is closed in X and, moreover, BI is locally
finite in X’, E is a locally finite collection in X for m-l, 2,...,
n-l, 2,.... Therefore, E is a a-locally finite collection in X. For
an arbitrary point x of X and an arbitrary open set U of X con-
taining x let n be the smallest number such as x e X and m the
smallest number such as x e H-. Then x e X. Since is a net
or X, there is an 1 such that x eBUX for some B e B. Put
k-max {m, 1}. Then we have x (B-H;-)c U by the assumptions
that c and H,-H$-. This shows that E is a net for X,
completing the proof of Theorem 2.

4) Order<=2 of a mapping f:XY means [f-l(y)[=<2 for each y Y, where
[f-l(y)[ is a cardinal number of f-(y).

5) A closed mapping f of a space X onto a space Y is called perfect iff-i(y)
is compact for each y Y.
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Proof of Theorem 1. Since Y is a locally compact metric
space by Lemma 1, there exists a discrete collection {Y,I e Og}
which is a closed covering of Y and, each of which is a countable
union of compact metric subspaces K, (n-l, 2, ...), therefore,
separable metric subspaces. When we put X.-f-(Y.) for each
e, we have that X is a discrete sum of {X]e}. Hence, it
is sufficient to show that each X. is metrizable. Now, let be a
fixed element of . Since f] X. is an open finite-to-one mapping

of X. onto Y, by Lemma 3 we have that Y,- Y,,X.- X.
i i

and f X. is a locally homeomorphic, perfect mapping. Since Y
is separable metric and f]X. is perfect for n-1, 2,’", X. is a
LindelSf space for n- 1, 2... (cf. 4). Hence, X is a LindelSf
space by Lemma 2, therefore, paracompact space (cf. 5). Since a
compact space is an M-space and X is locally compact, X is a
paracompact, locally M-space and, moreover, a space with a a-locally
finite net by Theorem 2. Therefore, X. is metrizable (cf. 8,
Theorem 3.7), completing the proof of Theorem 1.

Proof of Theorem 3. Using f, X is a space with a a-locally
finite net by Theorem 2. Using g, X is an M-space (cf. 7).
Hence, X is a normal T M-space with a a-locally finite net, there-
fore, metrizable (cf. 8, Theorem 3.6).

4. xample. Let A0, A, A, be subsets of Euclidean plane
R such that A0- {(x, y) 1 x, y 0} and

for n-l, 2, ..-, and X- A. Let us define the topology of X
0

as follows: G is open in X if and only if GA is open in A as
a subspace of R for each n. Since X does not satisfy the first
countable axiom at (0, 0), X is not matirzable. Let Y=Ao be a
subspace of R and f a mapping of X onto Y such that

f((x, y))-
x,y) if (x,y) e UA.

Then it is easily seen that f is an open, orderS2 mapping of a
non-metrizable, hereditarily paracompact space X onto a compact
metric space Y.
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