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1. Introduction and theorems. Recently, A. Arhangel’skii [2]
proved the following result:

A completely regular T, space which is the inverse image of
a metric space under an open-closed finite-to-one mapping® 1is
metrizable. Also, in the same paper he showed that the inverse
mage of a compact metric space under an open finite-to-one
mapping needs not be metrizable.”

Hence, we shall consider the metrizability of it adding some
assumptions and obtain the following result:

Theorem 1. If f is an open finite-to-one mapping of a
normal, locally compact T, space X onto a metric space Y, then
X 1s metrizable.

On the other hand, in [8] we introduced and discussed the
notion of spaces with o-locally finite nets® as a class of topological
spaces containing all metric spaces. As for the space with a g-locally
finite net, the following holds:

Theorem 2. Let f be an open finite-to-one mapping of a
normal T, space X onto a collectionwise normal T, space with
a o-locally finite net. Then X has a o-locally finite net.

If we combine Theorem 2 with the notion of M-space (cf. [7]),
we can obtain the another proof of the above Arhangel’skii’s theorem
and a generalization of it:

Theorem 3. Let f be an open finite-to-one mapping of a
normal T, space X onto a collectionwise normal T, space Y with
a o-locally finite net and g a closed mapping of X onto a metric
space Z such that g='(z) ts countably compact for each ze Z.
Then X 1is metrizable.

In the following we shall prove Theorems 2, 1, and 3 using some
lemmas, and construct an example of a non-metrizable hereditarily

1) In this note we consider only continuous mapping.

2) The description of his example seems to contain some inaccuracies.

3) A collection B of (not necessarily open) sets of a topological space X is
called a met for X if, whenever 2€ U with «# a point and U open in X, then
2€ Bc U for some BEDB (cf. [6],[3]). A net which is a union of countably many
locally finite collections is called a g-locally finite net (cf. [8]).
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paracompact space which is the inverse image of a compact metric
space under an open, order<2Y mapping.

2. Lemmas. Lemma 1. Let f be an open mapping of a
locally compact space X onto a T, space Y. Then Y s also
locally compact.

Lemma 2. Let X be a countable union of subspaces of X,
each of which ts Lindelof. Then X 1s also Lindelof.

Since these two lemmas are almost clear, we omit the proofs.

The following is due to Arhangel’skii [1].

Lemma 3. Let f be an open finite-to-one mapping of a T,
space X onto a T, space Y and Y,={y|lye?Y,|f'()|=n},
X, =f"'(Y,) for n=1,2,.--.., Then f,=f|X, 1s a locally homeo-
morphic, perfect® mapping of X, onto Y,.

3. Proofs. Proof of Theorem 2. Let us put Y,, X.,,,' and f,
as in Lemma 3 forn=1,2, -... Since Y is hereditarily paracompact
(cf. [8], Theorem 2.9) and Y, has also a o-locally finite net for
n=1,2, ... (cf. [8] Theorem 2.1), Y, is a paracompact space with
a o-locally finite net for n=1,2, .... Since f, is a locally homeo-
morphie, perfect mapping by Lemma 3, X, is also a paracompact

space with a o-locally finite net B" = | B" (cf. [8], Theorem 2.5),
where we can assume B.CB:., form?n:l, 2, .--. Let Y,:=EJ Y,
and X,=s"%(Y,). Then Y, is closed in Y. Since Y is perfgétly
normal (ef. [8], Theorem 2.8), we have Y .= ﬁ G? where G? is an
open set of Y such that Gro>G?,, for i=1, 2, -‘-=t. Put Hr=f"4G?)
for 1=1,2, .-.. Then Xi,zﬁ H. Now we put €% =38:N(X—Hz™")
for m=1,2, ---;n=1, 2, --t=1Where H!=¢ for m=1,2, .--, and
€= G €. Then € is a o-locally finite net for X. That is; since

m,n=1

Hr'is open in X and X, is closed in X and, moreover, B, is locally
finite in X/, € is a locally finite collection in X for m=1,2, ---,
n=1,2, ..., Therefore, € is a o-locally finite collection in X. For
an arbitrary point x of X and an arbitrary open set U of X con-
taining « let n be the smallest number such as x < X, and m the
smallest number such as x¢ H»'. Then e X,. Since B" is a net
for X,, there is an [ such that x € BcUN X, for some Be®B", Put
k=max {m, l}. Then we have x € (B—H*)c U by the assumptions
that BrcBr and Hr D Hp'. This shows that € is a net for X,
completing the proof of Theorem 2.

4) Order=2 of a mapping f: X—Y means |f-i(y)|<2 for each y€Y, where
|f~Yy)| is a cardinal number of f—i(y).

5) A closed mapping f of a space X onto a space Y is called perfect if f~(y)
is compact for each y€ Y.
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Proof of Theorem 1, Since Y is a locally compact metric
space by Lemma 1, there exists a discrete collection {Y,|ac}
which is a closed covering of Y and, each of which is a countable
union of compact metric subspaces K,, (n=1,2, --.), therefore,
separable metric subspaces. When we put X,=f"(Y,) for each
ac?, we have that X is a discrete sum of {X,|ae}. Hence, it
is sufficient to show that each X, is metrizable. Now, let a be a
fixed element of A. Since f|X, is an open ﬁnite to-one mapping

of X, onto Y,, by Lemma 3 we have that Y,= U Y., Xo= U Xen

and f|X,, is a locally homeomorphic, perfect mapplng Smce Yo
is separable metric and f|X,, is perfect for n=1,2,.--, X,, is a
Lindelof space for n = 1,2 ... (cf. [4]). Hence, X, is a Lindelof
space by Lemma 2, therefore, paracompact space (cf. [57]). Since a
compact space is an M-space and X, is locally compact, X, is a
paracompact, locally M-space and, moreover, a space with a o-locally
finite net by Theorem 2. Therefore, X, is metrizable (cf. [8],
Theorem 3.7), completing the proof of Theorem 1.

Proof of Theorem 3. Using f, X is a space with a o-locally
finite net by Theorem 2. Using ¢, X is an M-space (cf. [7]).
Hence, X is a normal T, M-space with a o-locally finite net, there-
fore, metrizable (cf. [8], Theorem 3.6).

4. Example. Let A, A, A, --- be subsets of Euclidean plane
R? such that A,={(z, ¥)| —1=«, y<0} and

1 1
4,=(0,0u{@, Z)lo<x, p<t, toe<y<y o)
for n=1,2, .-+, and X= A,. Let us define the topology of X
as follows: G is open inn:i' if and only if GNA, is open in A, as
a subspace of R* for each n. Since X does not satisfy the first
countable axiom at (0, 0), X is not matirzable. Let Y=A4, be a
subspace of R? and f a mapping of X onto Y such that

FE W) {(x, Y) it (z,y)e 4,
X, Y))= . At
(—x,y) i (@yeU ..
Then it is easily seen that f is an open, order<2 mapping of a

non-metrizable, hereditarily paracompact space X onto a compact
metric space Y.
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