207. On Compactness in Ranked Spaces

By Yukio SAKAMOTO,^{*)} Hidetake NAGASHIMA,^{**)} and Kin'ichi YAJIMA^{***)}

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1967)

In this paper we will give a definition of compactness in the ranked space [1] and will prove some properties in respect of its compactness. We have used the same terminology as that introduced in the paper "On an Equivalence of Convergences in Ranked spaces" [3].

We say that the ranked space R satisfies the axiom (T_2) of separation, if and only if for any distinct points p and q of Rthere exist disjoint neighborhoods of p and of q respectively having certain ranks.

We say that the ranked space R satisfies the condition (M), if and only if for all points p of R the following condition is satisfied;

(M) if $V(p) \in \mathfrak{B}_{\alpha}$, $U(p) \in \mathfrak{B}_{\beta}$, and $\alpha \leq \beta$ then $V(p) \supseteq U(p)$. Definition. A subset A of the ranked space R is sequentially

Definition. A subset A of the ranked space R is sequentially compact if and only if every sequence of A has a subsequence which is R-convergent to a point of A.

Proposition 1. Let R be the ranked space satisfying the axiom (T_2) of separation and the condition (M). If a sequence $\{p_{\alpha}\}$ of R is R-convergent, then $\{\lim p_{\alpha}\}$ consists of only a point.

Proof. Suppose $p, q \in \{\lim_{\alpha} p_{\alpha}\}$ and $p \neq q$. Since $p, q \in \{\lim_{\alpha} p_{\alpha}\}$, there exist a fundamental sequence $\{V_{\alpha}(p)\}$ of neighborhoods of p such that $p_{\alpha} \in V_{\alpha}(p)$ and a fundamental sequence $\{U_{\alpha}(q)\}$ of neighborhoods of q such that $p_{\alpha} \in U_{\alpha}(q)$. Hence, for all α $p_{\alpha} \in V_{\alpha}(p) \cap U_{\alpha}(q)$. (1)

 $p_{\alpha} \in V_{\alpha}(p) \cap U_{\alpha}(q).$ (1) Since R satisfies the axiom (T_{2}) , there exist a neighborhood V(p) of p and a neighborhood U(q) of q such that $V(p) \in \mathfrak{B}_{7}$, $U(q) \in \mathfrak{B}_{\delta}$, and $V(p) \cap U(q) = \phi$.

By the condition (M), there exist $V_{\alpha_0}(p)$ and $U_{\alpha_0}(q)$ which are elements of $\{V_{\alpha}(p)\}$ and $\{U_{\alpha}(q)\}$ such that $V(p) \supseteq V_{\alpha_0}(p)$ and $U(q) \supseteq U_{\alpha_0}(q)$. Therefore, by (1) $p_{\alpha_0} \in V_{\alpha_0}(p) \cap U_{\alpha_0}(q) \subseteq V(p) \cap U(q)$, that is, $V(p) \cap U(q) \neq \phi$. This contradiction demonstrates that $\{\lim p_{\alpha}\}$ consists of only a point.

Proposition 2. Let R be the ranked space satisfying the

^{*)} Japan Women's University.

^{**)} Hokkaido University of Education.

^{***)} Japanese National Railways.

axiom (T_2) of separation and the condition (M). If a subset A of R is sequentially compact and $\{p_{\alpha}\}$ is a R-convergent sequence of A, then $\{\lim p_{\alpha}\}\subseteq A$.

Proof. By the proposition 1, $\{p_{\alpha}\}$ is *R*-convergent to a single point *p*. Hence any subsequence $\{p_{\alpha\beta}\}$ of $\{p_{\alpha}\}$ is *R*-convergent to p [1]. Also, by the proposition 1 $\{\lim_{\beta} p_{\alpha\beta}\}$ consists of a point. On the other hand, since *A* is sequentially compact, $p \in A$.

Proposition 3. Let R be the ranked space satisfying the axiom (T_2) of separation and the condition (M). If a subset A of R is sequentially compact then A is m-closed.

Proof. Suppose that A is not *m*-closed. Since R-A is not *m*-open, there exists some point x_0 belonging to R-A such that $V(x_0) \cap A \neq \phi$ and $V(x_0) \in \mathfrak{B}_{\gamma}$ for all γ . On the other hand, since R is a ranked space, there exists a fundamental sequence $\{V_{\alpha}(x_0)\}$ of neighborhoods of x_0 . Consequently, for every member $V_{\alpha}(x_0)$ of the fundamental sequence, there is a point p_{α} such that $p_{\alpha} \in V_{\alpha}(x_0) \cap A$. Hence $\{p_{\alpha}\}$ is a sequence of A and it is R-convergent to x_0 belonging to R-A. Since A is sequentially compact, by the proposition 2 x_0 is also contained in A. This contradiction demonstrates that A is *m*-closed.

Proposition 4. Let R be a sequentially compact ranked space satisfying the condition (M). If a subset A of R is m-closed then A is sequentially compact.

Proof. Let $\{p_{\alpha}\}$ be an arbitrary sequence of points in A. Since R is sequentially compact and $\{p_{\alpha}\}$ is a sequence of R, there is a point p of R and a subsequence $\{p_{\alpha_{\beta}}\}$ of $\{p_{\alpha}\}$ such that $p \in \{\lim_{s} p_{\alpha_{\beta}}\}$. Then, we have $p \in A$. Therefore, A is sequentially compact. In fact, if $p \notin A$ then $p \in R-A$. Since R-A is m-open, by the proposition 3 of the previous paper [4] $\{p_{\alpha_{\beta}}\}$ is eventually in R-A. Hence $\{p_{\alpha_{\beta}}\}$ is not a sequence of A. This contradiction demonstrates that $p \in A$.

Proposition 5. Let f be a continuous function [2] carrying a sequentially compact ranked space X onto a ranked space Y. Then Y is sequentially compact.

Proof. Let $\{q_{\alpha}\}$ be an arbitrary sequence of points in Y. Since f is a mapping of X onto Y, for every q_{α} there is p_{α} belonging to X such that $f(p_{\alpha}) = q_{\alpha}$. Since X is sequentially compact, $\{p_{\alpha}\}$ has a subsequence $\{p_{\alpha\beta}\}$ which is *R*-convergent to a point p of X. That is,

$$p \in \{\lim p_{\alpha_{\mathsf{R}}}\}$$

Since f is a continuous function, $f(p) \in \{\lim_{\beta} f(p_{\alpha_{\beta}})\}$. Hence Y is

sequentially compact.

Remark 1. In the proposition 1 and 2, we assume that the ranked space satisfies the axiom (T_2) and the condition (M). If one of them fails then these propositions do not hold. The following examples show these facts.

Example 1. In the 2-dimensional Euclidean space R, we define a neighborhood $V_{n,l}(p_0)$ of a point $p_0 = (x_0, y_0)$ with a rank n, as follows. Let $V_{n,l}(p_0)$ be the subset consisting of all points p = (x, y)such that x and y satisfy the following inequalities:

$$(1) -\infty < y < y_0,$$

 $(2) \quad 0 \leq c^2(y-y_0)^2 - (x-x_0)^2 < c^2/n^2,$

 $(3) \quad 0 \ge c^2(x-x_0) - (y-y_0+l\sqrt{1+c^2})^2,$

where n is a natural number, l is a fixed positive number and c is a positive constant.

Then, R is a ranked space [1] and satisfies the condition (M), but R does not satisfy the axiom (T_2) . In this ranked space R, a sequence $\{p_{\alpha}\}$ such as $p_{\alpha} = \left(0, \frac{1}{\alpha}\right)$ is R-convergent to the origin 0. However $\{\lim_{\alpha} p_{\alpha}\}$ does not consist of only a point. Therefore the proposition 1 does not hold. Moreover, let A be the subset that consists of $\{p_{\alpha}\}$ and the origin 0. A is sequentially compact. But, $\{\lim_{\alpha} p_{\alpha}\} \not\subseteq A$. Therefore the proposition 2 does not hold.

Example 2. When l is not fixed, R is still a ranked space and satisfies the axiom (T_2) . But R does not satisfy the condition (M). In this case, the proposition 1 and 2 do not hold as in the example 1.

Remark 2. The ranked space R shown in the example 1 satisfies the axiom (T_0) [1] of separation and the condition (M), but the proposition 1 does not hold in R.

References

- [1] K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).
- [2] ----: Sur la méthode des espaces rangés. II. Proc. Japan Acad., **42**, 549-554 (1966).
- [3] H. Nagashima, K. Yajima, and Y. Sakamoto: On an equivalence of convergences in ranked spaces. Proc. Japan Acad., 43, 23-27 (1967).
- [4] K. Yajima, Y. Sakamoto, and H. Nagashima: On the sets of points in the ranked space. Proc. Japan Acad., 43, 941-945 (1967).