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205. On Maharam Subfactors of Finite Factors. 11

By Hisashi CHoODA
Department of Mathematics, Osaka Kyoiku University
(Comm. by Kinjird KUNUGI, M.J.A., Dec. 12, 1967)

1. In [1], we have showed that there exists a Maharam II-
subfactor in a II-factor and that every I,-subfactor of a II-factor
is a Maharam subfactor. In this paper, as a continuation of [17,
we shall show that there exists a non-Maharam proper II,-subfactor
in a II-factor.

2. Let A be a II-factor acting on a Hilbert space  and %
the full operator algebra on the 2-dimensional Hilbert space & Let
(T, 4,5 =1,2, T;; e A, be the matrix representation of an operator
T of the tensor product ARXB, and ¢ the faithful normal trace of
J with ¢(1)=1. Then the functional ¢ on ARP defined by

#(T)= |:§D(Tu)—2l-90(T22)] for T=(T:;) e AQSP
is a faithful normal trace on JX.P and satisfies the equality ¢(1)=1.
For T=(T;;) e ARPB, let
e Bij( T11+ Tzz)
T "‘( 2 ) ’

Then the mapping JARB> T—T°ec ARCs satisfies the following
properties: For any complex numbers « and B, and any S and T
of ARSP,

(1) (aS+BTy=aS+BT",

(2) T*e___Te*,

(3) (ST =(STy =S'T",

(4) #(T)=4(T),

(5) (ARDB):={T*; T ¢ AQRB}=ARCx,
(6) 1=1.

1), (2), (5), and (6) are obvious. To prove (3), let S=(S;;) and
T=(T;;), where T;;, S;;e A for ¢,7=1,2. Then
e Bia‘(Sn‘l‘ Szz) e __ 5ij< T11+ Tzz)
S ( 2 > and T _( 2 )
Hence we have

S:T= (glaij—-“su ;_ S Tjk)

—_— S 1 S 22
- (—— T,,; k) .
Therefore
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(S*T): = (.;_ai,.[%(su STt Tzz)])

=%<5“<Su+ Su)(Tu+ Ta)

=8Te.
Similarly, we have (ST¢)*=S:T°. Hence (3) is satisfied. For (4),
we have

KT =5 50T+ T)
171
— o LT+ T+ (T T |

= —;—so( T+ Tu)=4(T).

Therefore, ¢ is the conditional expectation of ARSPB relative to
AQCs in the sense of Umegaki [3].

If there exists a projection E=(E;), 1,5=1, 2, E;;€ A, in ARP
such as E*=1/5, then we have the following equalities:

a) ‘]ZL(E11+E22):%:
b) Eu* =E11, Ezz* = Lags,y and Em* = Lagyy
C) EuEn* + E12E21 = En’
d) E21E12 + EzzEzz* = Lggy
e) E11E12+E12E22:E12-
By a) and e), we have
f) %Em:EuEm—EmEuo

By a) and f), we have
3E22E12= —(E11E12+2E12 11),
then we have
g) 3E22E12E12* = - (E11E12E12* +2-E12E11E12*)'
E,, E.E.* and E,, are mutually commutative by a) and c¢), whence
the left side of g) is nonnegative and the right side of g) is nonposi-
tive, and so we have

h) E22E12 12* =0.
By ¢) and h),
1) EzzEn(l - Eu) =0.

On the other hand, by a), ¢), and d),
0<E,, Bu< 2

and
EuEzz = EzzEu-
Therefore, applying 4), we have
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J) EuEzz = EzzEu =0.

Let F=5E,/2, then F is a projection in . by a), b), and j).
However, we shall show, in the below, that this projection F' is 0.
By the assumption,

2 2
Ell_ng -EZZ— 5(1 F)
and
E12E12* :iF y
25
and by f), we have

3 6 F_EF—(-;“F— E12E11E12*9

52 5 25
therefore, we have
03*1‘ iF: '“EleuEu* <0.
5 25

Thus, we have
E,=0, E,=0, and E=%

Applying d), we have finally

(3)-%
5/ 5’
which is a contradiction.

Hence AX®Cs is not a Maharam subfactor of AX.%P, whence
we have proved.

Theorem 1. Let A be a II-factor acting on a Hilbert space
9 and B the full operator algebra on a 2-dimensional Hilbert space
&, then JARCsq 1s not a Maharam subfactor of ARDB.

Theorem 1 gives an example of a II-factor whichh as a non-
Maharam proper II-subfactor. The following theorem has more
general character:

Theorem 2. Let A be a II-factor. Then there exists a proper
II-subfactor B of A which is not a Maharam subfactor.

Proof. Let C be a IL-subfactor of 4. Then there exists a
II-factor % such that BRC is isomorphic to A4 by a lemma of
Misonou [2]. Being considered % as a subfactor of 4, & is not a
Maharam subfactor of 4 by Theorem 1. Clearly, & is a proper
subfactor. Hence Theorem 2 is established.

3. In this oppotunity, we wish to give a correction on the
preceding [1; Lemma 17: In our proof, it is necessary to assume
that ANA, and BNDB, are semi-finite. Namely, the corrected
statement of [1; Lemma 1] is as following: Let 4 and 7, (resp.
P and B,) be semi-finite von Neumann algebras acting on a Hilbert
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space O (resp. 8). If ANA, and BNP, are semi-finite, then we
have
(%) (ARB) N(AQB) = (AN A)Q(BN B,).

It seems to the author that the semi-finiteness assumption of
the lemma is superfluous since (x) is able to prove for any von
Neumann algebras using a theorem in an unpublished paper of M.
Tomita.
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