On Maharam Subfactors of Finite Factors. II 205.

By Hisashi Choda

Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1967)

1. In [1], we have showed that there exists a Maharam II_1 subfactor in a II_1 -factor and that every I_m -subfactor of a II_1 -factor is a Maharam subfactor. In this paper, as a continuation of [1], we shall show that there exists a non-Maharam proper II_1 -subfactor in a II_1 -factor.

2. Let \mathcal{A} be a H_1 -factor acting on a Hilbert space \mathfrak{G} and \mathcal{B} the full operator algebra on the 2-dimensional Hilbert space \Re . Let $(T_{ij}), i, j = 1, 2, T_{ij} \in \mathcal{A}$, be the matrix representation of an operator T of the tensor product $\mathcal{A} \otimes \mathcal{B}$, and φ the faithful normal trace of \mathcal{A} with $\varphi(1)=1$. Then the functional ϕ on $\mathcal{A}\otimes\mathcal{B}$ defined by

$$\phi(T) = rac{\left[\varphi(T_{\scriptscriptstyle 11}) + \varphi(T_{\scriptscriptstyle 22})
ight]}{2} \quad ext{ for } T = (T_{\scriptscriptstyle ij}) \in \mathcal{A} \otimes \mathcal{B}$$

is a faithful normal trace on $\mathcal{A} \otimes \mathcal{B}$ and satisfies the equality $\phi(1) = 1$. For $T = (T_{ij}) \in \mathcal{A} \otimes \mathcal{B}$, let

$$T^{\epsilon} \!=\! \left(\! -\! rac{\delta_{ij}(T_{\scriptscriptstyle 11}\!+T_{\scriptscriptstyle 22})}{2}\!
ight) .$$

Then the mapping $\mathcal{A} \otimes \mathcal{B} \ni T \longrightarrow T^* \in \mathcal{A} \otimes C_{\Re}$ satisfies the following properties: For any complex numbers α and β , and any S and T of $\mathcal{A} \otimes \mathcal{B}$,

(1)
(
$$\alpha S + \beta T$$
)^e = $\alpha S^e + \beta T^e$,
(2)
($T^{*e} = T^{e*}$,
(3)
($S^e T$)^e = (ST^e)^e = $S^e T^e$,
(4)
 $\phi(T^e) = \phi(T)$,
(5)

$$(2) T^{*\epsilon} =$$

$$(3) \qquad (S^{\varepsilon}T)^{\varepsilon} = (ST^{\varepsilon})^{\varepsilon} = S^{\varepsilon}T^{\varepsilon},$$

$$(4) \qquad \qquad \phi(T^{\epsilon}) = \phi(T$$

$$(5) \qquad (\mathcal{A}\otimes\mathcal{B})^{\epsilon} = \{T^{\epsilon}; T \in \mathcal{A}\otimes\mathcal{B}\} = \mathcal{A}\otimes C_{\Re},$$

$$(6) 1^{\epsilon} = 1.$$

(1), (2), (5), and (6) are obvious. To prove (3), let $S = (S_{ij})$ and $T = (T_{ij})$, where T_{ij} , $S_{ij} \in \mathcal{A}$ for i, j = 1, 2. Then

$$S^{\varepsilon} = \left(rac{\delta_{ij}(S_{\scriptscriptstyle 11} + S_{\scriptscriptstyle 22})}{2}
ight) \quad ext{and} \quad T^{\varepsilon} = \left(rac{\delta_{ij}(T_{\scriptscriptstyle 11} + T_{\scriptscriptstyle 22})}{2}
ight).$$

Hence we have

$$S^{\epsilon}T \!=\! \left(\! \sum\limits_{j=1}^{2} \! \delta_{ij} \! rac{S_{11} \!+\! S_{22}}{2} \, T_{jk}
ight)
onumber \ = \! \left(\! rac{S_{11} \!+\! S_{22}}{2} \, T_{ik}
ight) \!\!.$$

Therefore

H. CHODA

$$egin{aligned} &(S^*T)^*\!=\!\left(rac{1}{2}\delta_{ij}\!\left[rac{1}{2}(S_{11}\!+\!S_{22})(T_{11}\!+\!T_{22})
ight]
ight) \ &=\!rac{1}{4}(\delta_{ij}(S_{11}\!+\!S_{22})(T_{11}\!+\!T_{22})) \ &-S^*T^* \end{aligned}$$

Similarly, we have $(ST^{\epsilon})^{\epsilon} = S^{\epsilon}T^{\epsilon}$. Hence (3) is satisfied. For (4), we have

$$egin{aligned} \phi(T^{\epsilon}) &= rac{1}{2} \phi(\delta_{ij}(T_{11}+T_{22})) \ &= rac{1}{2} igg[rac{1}{2} (arphi(T_{11}+T_{22})+arphi(T_{11}+T_{22})) igg] \ &= rac{1}{2} arphi(T_{11}+T_{22}) = \phi(T). \end{aligned}$$

Therefore, ε is the conditional expectation of $\mathcal{A}\otimes\mathcal{B}$ relative to $\mathcal{A}\otimes C_{\Re}$ in the sense of Umegaki [3].

If there exists a projection $E = (E_{ij})$, $i, j = 1, 2, E_{ij} \in \mathcal{A}$, in $\mathcal{A} \otimes \mathcal{B}$ such as $E^{\epsilon} = 1/5$, then we have the following equalities:

a)
$$\frac{1}{2}(E_{11}+E_{22})=\frac{1}{5},$$

b)
$$E_{11}^*=E_{11}, E_{22}^*=E_{22}, \text{ and } E_{12}^*=E_{21},$$

c)
$$E_{11}E_{11}^*+E_{12}E_{21}=E_{11},$$

d)
$$E_{21}E_{12}+E_{22}E_{22}^*=E_{22},$$

e)
$$E_{11}E_{12}+E_{12}E_{22}=E_{12}.$$

By a) and e), we have

f)
$$\frac{3}{5}E_{12}=E_{11}E_{12}-E_{12}E_{11}$$
.

By a) and f), we have

$$BE_{22}E_{12} = -(E_{11}E_{12} + 2E_{12}E_{11}),$$

then we have

g)

 $3E_{22}E_{12}E_{12}^* = -(E_{11}E_{12}E_{12}^* + 2E_{12}E_{11}E_{12}^*).$

 E_{22} , $E_{12}E_{12}^*$, and E_{11} are mutually commutative by a) and c), whence the left side of g) is nonnegative and the right side of g) is nonpositive, and so we have

h) $E_{22}E_{12}E_{12}^*=0.$ By c) and h), i) $E_{22}E_{11}(1-E_{11})=0.$ On the other hand, by a), c), and d), 0 < E = E < 2

$$0 \le E_{11}, E_{22} \le \frac{2}{5}$$

and

$$E_{11}E_{22} = E_{22}E_{11}$$
.

Therefore, applying i), we have

938

No. 10]

j)

$$E_{_{11}}E_{_{22}}\!=\!E_{_{22}}E_{_{11}}\!=\!0.$$

Let $F=5E_{11}/2$, then F is a projection in \mathcal{A} by a), b), and j). However, we shall show, in the below, that this projection F is 0. By the assumption,

$$E_{11} = \frac{2}{5}F, \quad E_{22} = \frac{2}{5}(1-F)$$

and

$$E_{12}E_{12}^*=rac{6}{25}F,$$

and by f), we have

$$\frac{3}{5} \frac{6}{25} F = \frac{2}{5} F \frac{6}{25} F - E_{12} E_{11} E_{12}^*,$$

therefore, we have

$$0 \leq \frac{1}{5} \frac{6}{25} F = -E_{12} E_{11} E_{12}^* \leq 0.$$

Thus, we have

$$E_{\scriptscriptstyle 11} \!=\! 0, \, E_{\scriptscriptstyle 12} \!=\! 0, \, \, \, \, ext{and} \, \, \, \, E_{\scriptscriptstyle 22} \!=\! rac{2}{5}.$$

Applying d), we have finally

$$\left(\frac{2}{5}\right)^2 = \frac{2}{5},$$

which is a contradiction.

Hence $\mathcal{A} \otimes C_{\Re}$ is not a Maharam subfactor of $\mathcal{A} \otimes \mathcal{B}$, whence we have proved.

Theorem 1. Let \mathcal{A} be a II_1 -factor acting on a Hilbert space \mathfrak{F} and \mathcal{B} the full operator algebra on a 2-dimensional Hilbert space \mathfrak{R} , then $\mathcal{A} \otimes C_{\mathfrak{R}}$ is not a Maharam subfactor of $\mathcal{A} \otimes \mathcal{B}$.

Theorem 1 gives an example of a II_1 -factor which has a non-Maharam proper II_1 -subfactor. The following theorem has more general character:

Theorem 2. Let \mathcal{A} be a II_1 -factor. Then there exists a proper II_1 -subfactor \mathcal{B} of \mathcal{A} which is not a Maharam subfactor.

Proof. Let \mathcal{C} be a I_2 -subfactor of \mathcal{A} . Then there exists a II_1 -factor \mathcal{B} such that $\mathcal{B} \otimes \mathcal{C}$ is isomorphic to \mathcal{A} by a lemma of Misonou [2]. Being considered \mathcal{B} as a subfactor of \mathcal{A} , \mathcal{B} is not a Maharam subfactor of \mathcal{A} by Theorem 1. Clearly, \mathcal{B} is a proper subfactor. Hence Theorem 2 is established.

3. In this oppotunity, we wish to give a correction on the preceding [1; Lemma 1]: In our proof, it is necessary to assume that $\mathcal{A} \cap \mathcal{A}_1$ and $\mathcal{B} \cap \mathcal{B}_1$ are semi-finite. Namely, the corrected statement of [1; Lemma 1] is as following: Let \mathcal{A} and \mathcal{A}_1 (resp. \mathcal{B} and \mathcal{B}_1) be semi-finite von Neumann algebras acting on a Hilbert

space \mathfrak{G} (resp. \mathfrak{R}). If $\mathcal{A} \cap \mathcal{A}_1$ and $\mathcal{B} \cap \mathcal{B}_1$ are semi-finite, then we have

 $(*) \qquad (\mathcal{A} \otimes \mathcal{B}) \cap (\mathcal{A}_1 \otimes \mathcal{B}_1) = (\mathcal{A} \cap \mathcal{A}_1) \otimes (\mathcal{B} \cap \mathcal{B}_1).$

It seems to the author that the semi-finiteness assumption of the lemma is superfluous since (*) is able to prove for any von Neumann algebras using a theorem in an unpublished paper of M. Tomita.

References

- H. Choda: On Maharam subfactors of finite factors. Proc. Japan Acad., 43, 451-455 (1967).
- [2] Y. Misonou: On divisors of factors. Tohoku Math. J., 8, 63-69 (1956).
- [3] H. Umegaki: Conditional expectation in an operator algebra. Tohoku Math. J., 6, 177-181 (1954).