205. On Maharam Subfactors of Finite Factors. II

By Hisashi Choda
Department of Mathematics, Osaka Kyoiku University (Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1967)

1. In [1], we have showed that there exists a Maharam $I I_{1}$ subfactor in a $I I_{1}$-factor and that every I_{n}-subfactor of a $I I_{1}$-factor is a Maharam subfactor. In this paper, as a continuation of [1], we shall show that there exists a non-Maharam proper $I I_{1}$-subfactor in a $I I_{1}$-factor.
2. Let \mathscr{A} be a $I I_{1}$-factor acting on a Hilbert space $\mathscr{S}_{\mathcal{S}}$ and \mathscr{B} the full operator algebra on the 2 -dimensional Hilbert space Ω. Let ($T_{i j}$), $i, j=1,2, T_{i j} \in \mathcal{A}$, be the matrix representation of an operator T of the tensor product $\mathcal{A} \otimes \mathscr{B}$, and φ the faithful normal trace of \mathcal{A} with $\varphi(1)=1$. Then the functional ϕ on $\mathcal{A} \otimes \mathscr{B}$ defined by

$$
\phi(T)=\frac{\left[\varphi\left(T_{11}\right)+\varphi\left(T_{22}\right)\right]}{2} \text { for } T=\left(T_{i j}\right) \in \mathscr{A} \otimes \mathscr{P}
$$

is a faithful normal trace on $\mathcal{A} \otimes \mathscr{B}$ and satisfies the equality $\phi(1)=1$.
For $T=\left(T_{i j}\right) \in \mathcal{A} \otimes \mathscr{B}$, let

$$
T^{\varepsilon}=\left(\frac{\delta_{i j}\left(T_{11}+T_{22}\right)}{2}\right) .
$$

Then the mapping $\mathcal{A} \otimes \mathscr{B} \ni T \rightarrow T^{\varepsilon} \in \mathscr{A} \otimes C \mathfrak{\Re}$ satisfies the following properties: For any complex numbers α and β, and any S and T of $\mathcal{A} \otimes \mathscr{B}$,

$$
\begin{gather*}
(\alpha S+\beta T)^{\varepsilon}=\alpha S^{\varepsilon}+\beta T^{\varepsilon}, \tag{1}\\
T^{* \varepsilon}=T^{\varepsilon *}, \tag{2}\\
\left(S^{\varepsilon} T\right)^{\varepsilon}=\left(S T^{\varepsilon}\right)^{\varepsilon}=S^{\varepsilon} T^{\varepsilon}, \tag{3}\\
\phi\left(T^{\varepsilon}\right)=\phi(T), \tag{4}\\
(\mathcal{A} \otimes \mathscr{B})^{\varepsilon}=\left\{T^{\varepsilon} ; T \in \mathcal{A} \otimes \mathscr{B}\right\}=\mathcal{A} \otimes C \mathscr{R}, \tag{5}\\
1^{\varepsilon}=1 . \tag{6}
\end{gather*}
$$

(1), (2), (5), and (6) are obvious. To prove (3), let $S=\left(S_{i j}\right)$ and $T=\left(T_{i j}\right)$, where $T_{i j}, S_{i j} \in \mathcal{A}$ for $i, j=1,2$. Then

$$
S^{\varepsilon}=\left(\frac{\delta_{i j}\left(S_{11}+S_{22}\right)}{2}\right) \quad \text { and } \quad T^{\varepsilon}=\left(\frac{\delta_{i j}\left(T_{11}+T_{22}\right)}{2}\right)
$$

Hence we have

$$
\begin{aligned}
S^{\varsigma} T & =\left(\sum_{j=1}^{2} \delta_{i j} \frac{S_{11}+S_{22}}{2} T_{j k}\right) \\
& =\left(\frac{S_{11}+S_{22}}{2} T_{i k}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(S^{e} T\right)^{e}= & \left(\frac{1}{2} \delta_{i j}\left[\frac{1}{2}\left(S_{11}+S_{22}\right)\left(T_{11}+T_{22}\right)\right]\right) \\
& =\frac{1}{4}\left(\delta_{i j}\left(S_{11}+S_{22}\right)\left(T_{11}+T_{22}\right)\right) \\
& =S^{e} T^{e}
\end{aligned}
$$

Similarly, we have $\left(S T^{\varepsilon}\right)^{\varepsilon}=S^{\varepsilon} T^{\varepsilon}$. Hence (3) is satisfied. For (4), we have

$$
\begin{aligned}
\phi\left(T^{e}\right) & =\frac{1}{2} \phi\left(\delta_{i j}\left(T_{11}+T_{22}\right)\right) \\
& =\frac{1}{2}\left[\frac{1}{2}\left(\varphi\left(T_{11}+T_{22}\right)+\varphi\left(T_{11}+T_{22}\right)\right)\right] \\
& =\frac{1}{2} \varphi\left(T_{11}+T_{22}\right)=\phi(T)
\end{aligned}
$$

Therefore, ε is the conditional expectation of $\mathcal{A} \otimes \mathscr{B}$ relative to $\mathcal{A} \otimes C \Omega$ in the sense of Umegaki [3].

If there exists a projection $E=\left(E_{i j}\right), i, j=1,2, E_{i j} \in \mathcal{A}$, in $\mathcal{A} \otimes \mathscr{B}$ such as $E^{\varepsilon}=1 / 5$, then we have the following equalities:
a)

$$
\frac{1}{2}\left(E_{11}+E_{22}\right)=\frac{1}{5}
$$

b)

$$
E_{11}^{*}=E_{11}, \quad E_{22}^{*}=E_{22}, \quad \text { and } \quad E_{12}^{*}=E_{21},
$$

c)
d) $E_{11} E_{11}{ }^{*}+E_{12} E_{21}=E_{11}$,
e)

$$
E_{21} E_{12}+E_{22} E_{22}^{*}=E_{22},
$$

$$
E_{11} E_{12}+E_{12} E_{22}=E_{12}
$$

By a) and e), we have
f)

$$
\frac{3}{5} E_{12}=E_{11} E_{12}-E_{12} E_{11}
$$

By a) and f), we have

$$
3 E_{22} E_{12}=-\left(E_{11} E_{12}+2 E_{12} E_{11}\right),
$$

then we have
g) $\quad 3 E_{22} E_{12} E_{12}^{*}=-\left(E_{11} E_{12} E_{12}{ }^{*}+2 E_{12} E_{11} E_{12}{ }^{*}\right)$.
$E_{22}, E_{12} E_{12}{ }^{*}$, and E_{11} are mutually commutative by a) and c), whence the left side of g) is nonnegative and the right side of g) is nonpositive, and so we have
h)

$$
E_{22} E_{12} E_{12}^{*}=0
$$

By c) and h),
i)

$$
E_{22} E_{11}\left(1-E_{11}\right)=0
$$

On the other hand, by a), c), and d),

$$
0 \leq E_{11}, E_{22} \leq \frac{2}{5}
$$

and

$$
E_{11} E_{22}=E_{22} E_{11} .
$$

Therefore, applying i), we have
j) $\quad E_{11} E_{22}=E_{22} E_{11}=0$.

Let $F=5 E_{11} / 2$, then F is a projection in \mathcal{A} by a), b), and j). However, we shall show, in the below, that this projection F is 0 . By the assumption,

$$
E_{11}=\frac{2}{5} F, \quad E_{22}=\frac{2}{5}(1-F)
$$

and

$$
E_{12} E_{12}{ }^{*}=\frac{6}{25} F,
$$

and by f), we have

$$
\frac{3}{5} \frac{6}{25} F=\frac{2}{5} F \frac{6}{25} F-E_{12} E_{11} E_{12}{ }^{*},
$$

therefore, we have

$$
0 \leq \frac{1}{5} \frac{6}{25} F=-E_{12} E_{11} E_{12} * \leq 0 .
$$

Thus, we have

$$
E_{11}=0, E_{12}=0, \quad \text { and } \quad E_{22}=\frac{2}{5} .
$$

Applying d), we have finally

$$
\left(\frac{2}{5}\right)^{2}=\frac{2}{5}
$$

which is a contradiction.
Hence $\mathcal{A} \otimes \boldsymbol{C}_{\Omega}$ is not a Maharam subfactor of $\mathcal{A} \otimes \mathscr{B}$, whence we have proved.

Theorem 1. Let \mathcal{A} be a $I I_{1}$-factor acting on a Hilbert space \mathfrak{G} and \mathscr{B} the full operator algebra on a 2 -dimensional Hilbert space Ω, then $\mathcal{A} \otimes C_{\Omega}$ is not a Maharam subfactor of $\mathcal{A} \otimes \mathscr{B}$.

Theorem 1 gives an example of a $I I_{1}$-factor whichh as a nonMaharam proper $I I_{1}$-subfactor. The following theorem has more general character:

Theorem 2. Let \mathcal{A} be a $I I_{1}$-factor. Then there exists a proper $I I_{1}$-subfactor \mathscr{B} of \mathcal{A} which is not a Maharam subfactor.

Proof. Let \mathcal{C} be a I_{2}-subfactor of \mathcal{A}. Then there exists a $I I_{1}$-factor \mathscr{B} such that $\mathscr{B} \otimes \mathcal{C}$ is isomorphic to \mathcal{A} by a lemma of Misonou [2]. Being considered \mathscr{B} as a subfactor of \mathcal{A}, \mathscr{B} is not a Maharam subfactor of \mathcal{A} by Theorem 1. Clearly, \mathscr{B} is a proper subfactor. Hence Theorem 2 is established.
3. In this oppotunity, we wish to give a correction on the preceding [1; Lemma 1]: In our proof, it is necessary to assume that $\mathcal{A} \cap \mathscr{A}_{1}$ and $\mathscr{B} \cap \mathscr{B}_{1}$ are semi-finite. Namely, the corrected statement of [1; Lemma 1] is as following: Let \mathcal{A} and \mathcal{A}_{1} (resp. \mathscr{B} and \mathscr{B}_{1}) be semi-finite von Neumann algebras acting on a Hilbert
space \mathfrak{S} (resp. \mathfrak{R}). If $\mathscr{A} \cap \mathscr{A}_{1}$ and $\mathscr{B} \cap \mathscr{B}_{1}$ are semi-finite, then we have
(*)
$(\mathcal{A} \otimes \mathscr{B}) \cap\left(\mathscr{A}_{1} \otimes \mathscr{B}_{1}\right)=\left(\mathcal{A} \cap \mathscr{A}_{1}\right) \otimes\left(\mathscr{B} \cap \mathscr{B}_{1}\right)$.
It seems to the author that the semi-finiteness assumption of the lemma is superfluous since ($*$) is able to prove for any von Neumann algebras using a theorem in an unpublished paper of M. Tomita.

References

[1] H. Choda: On Maharam subfactors of finite factors. Proc. Japan Acad., 43, 451-455 (1967).
[2] Y. Misonou: On divisors of factors. Tohoku Math. J., 8, 63-69 (1956).
[3] H. Umegaki: Conditional expectation in an operator algebra. Tohoku Math. J., 6, 177-181 (1954).

