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1. Introduction. T. Tannaka [1] proved a duality theorem
for compact groups. Afterwards C. Chevalley [2] introduced the
representative algebra R(G) and the character set Hom (R(G), C)
and proved Tannaka’s theorem for compact Lie groups anew. This
work of Chevalley revealed the relation between the compact Lie
groups and algebraic groups. The representative algebra R(G) of
a general Lie group (not necessarily compact) was studied by G.
Hochschild and G. D. Mostow in [3]. They give several conditions
each of which is equivalent to say that R(G) is finitely generated.
One of these conditions says that the canonical homomorphism maps
the connected component G, of G onto the connected component of
the real proper automorphism group G* of R(G). This suggests a
kind of duality theorem for G.

In this note we say that the duality theorem holds for a
topological group G if the canonical homomorphism 7: g—R, is an
isomorphism of G onto the real proper automorphism group G* of
R(G) (cf. 3 for the definitions of G* and R,). In 4, we study the
relation between our duality theorem and the Tannaka duality
theorem (Theorem 1), In 5 we give a necessary and sufficient
condition that a Lie group with a finite number of connected com-
ponents satisfies the duality theorem (Theorem 2). Theorem 2 gives
the intimate relation between the duality theorem and the algebraic
group structure.

2. The Tannaka duality theorem. Let G be a topological
group. In this note, a representation of G means a continuous
homomorphism D of G into GL(n, C) for some natural number n
which is called the degree of D and denoted by d(D). The set of
all representations of G is called the dual object of G and denoted
by R. For elements D,, D,, and D in R, the direct sum D ®D,,
the tensor product D,®D, the equivalent representation vD~v~!
(v e GL(d(D), C)) and the complex conjugate representation D are
defined as usual. A complex representation ¢ of R is, by defini-
tion, a mapping from R into U GL(n, C) which satisfies

0) UD)eGL((D), C), 1) UD.@D)=LD)DLDy),
2) ((D®D)=UDYRL(Dy),  3) LDy =Dy
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for any representations D,, D,, D, and any regular matrix < of
degree d(D).

The set of all complex representations of the dual object R is
denoted by G*°(R). The topology of G*°(R) is defined as the weakest
topology making the maps {—¢(D) € GL(d(D), C) continuous for every
D in R. Then G*°(R) forms a topological group with the group
operation defined by {.I'(D)=C(D)¢(D). G*°(R) is called the
complex Tannaka group of G. The subgroup G*(R) of G*°(R)
defined by G*(R)={L e G*R); {(D)=L(D) for any D in R} is called
the Tannaka group of G. An element of G*(R) is called a repre-
sentation of R. For any element g in G the mapping {,: D—D(g)
belongs to G*(R). Moreover the mapping @: g—{¢, is a continuous
homomorphism of G into G*(R). When this canonical homomorphism
@ is an isomorphism of G onto G*(R) as topological groups, we say
that the Tannaka duality theorem holds for the group G.

3. The duality theorem. Let G and R be the same as above.
The set R(G) of all finite linear combinations of the matricial elements
of the representations of G forms an algebra over C and is called the
representative algebra of G. Any element g in G induces the right
translation R, and the left translation L, on R(G) which are defined
by (R,f)(h)=f(hg) and (L,f)(h)=f(gh). An automorphism « of the
algebra R(G) which commutes with every left translation is called
a proper automorphism. The group of all proper automorphisms of
R(G) is denoted by G*°. The topology of G*¢ is defined as the
weakest topology making ar—i(a(f)) continuous for every linear form
2 on R(@) and every f in R(G). This topology makes G*° a topo-
logical group. The real proper automorphism group G* is defined as
G*={a e G*%; a(f)=a(f) for any f in R(G)}. The canonical mapping
¥: g—R, is a continuous homomorphism of G into G*. When this
canonical homomorphism ¥ is an isomorphism of G onto G* as
topological groups, we say that the duality theorem holds for the
group G.

4. The relation between two kinds of duality theorems.
The set of all homomorphisms of the algebra R(G) into C which
maps 1 to 1 is denoted by Hom (R(G), C). Let e¢ be the identity
element of G. Then any element « in G*° defines a homomorphism
w € Hom (R(G), C), @: f—(af)(e). Conversely any @ in Hom (R(G), C)
determines a proper automorphism « by the identity a(f)(9)=w(L,f).
So the mapping I": a—w is a bijection of G*° onto Hom (R(G), C).
I maps the real proper automorphism group G* onto Hompg (R(G), C)
={w e Hom (R(G), C), o(f)=w(f) for any f in R(G)}. The topology
of Hom (R(G), C) is defined as the weakest topology making w—w(f)
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continuous for every f in R(G). Then I" is clearly continuous. To
prove I~ is also continuous, let f be an element in R(G). Then
the subspace V={L,f;geG}c is finite dimensional, so there exist
a finite number of elements f,, ---, f, in V and a,, -+, a, in R(G)
such that L,f=>1ai(9)f;. Applying w=1I(a) on both sides of the
last equality, we get a(f)=>o(f)a; and A(a(f))=>] o(f)A(a;).
This proves that /™ is continuous. So I" is a homeorﬁorphism of
G*¢ onto Hom (R(G), C).

Every w in Hom (R(G), C) defines an element ¢, of G*(R) which
maps D in R to the matrix whose (3, j)-element is w(D,;) where D, ;(g)
is the (7, j)-element of D(g). So we get a continuous mapping
T: w—{, of Hom (R(G), C) into G*°(R). T maps Homg (R(G), C)
into G*(R). The map ToI'=F is a continuous homomorphism of
G*° into G*’(R) which maps G* into G*(R). Lastly we define the
continuous mapping 6: g—w,(0,(f)=r(9)) of G into Homg (R(G), C).
Then the following diagram is commutative.

G*
71
*
G < lr J G*(N)
Nl /T
Homp, (R(G), C)
And the canonical mapping @ defined in 2 is the composition of the
two mapping ¥ and F"
O=Fo¥ (1)
The mapping T is injective because the matricial elements of the
representations span the vector space R(G). So the homomorphism
F' is a continuous isomorphism of G*° into G*°(R). Now suppose
that the homomorphism @ induces an isomorphism of G onto G*(R)
as topological groups. Then, by the identity (1), the mapping F'| G*
and so the homomorphism ¥ are also topological isomorphisms. So
we get the first half of the following Theorem 1.

Theorem 1. 1) If the Tannaka duality theorem holds for a
topological group G, then the duality theorem (defined im 3) holds
for G.

2) If every representation of G is completely reducible, then
the isomorphism F is surjective. In this case the duality theorem
Jor G implies the Tannaka duality theorem of G.

To prove the latter half of Theorem 1, we choose a repre-
sentative D* from each equivalence class « of irreducible repre-
sentations of G and form the complete set of representatives
D={D*: ac A}. The set B={D3: aec A, 1<, j<d(D*)} forms a basis
of the vector space R(G) because % is linearly independent by a
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theorem of Burnside. So every element { in G*°(R) defines uniquely
a linear form @ which maps D2 into the (¢, j)-element of the matrix
Z(D%. Now we shall prove that @ belongs to Hom (R(G), C) and
that {(D)=¢.(D) for any D in R, Any representation D can be
represented as D=v(D“® ... ®@D*)v, («; € A) by the assumption
of the completely reducibility. As @ is a linear form and {(D¢%)
=(w(Dg)), we get {(D)=(w(D;;)). Let Dand D’'beinR. Then we have
(@(Di;Di)) =D D")={(D)®LD")=(0(D;;)@(Dyy)). This proves that
o belongs to Hom (R(@), C) and {={,. Thus the mapping T is sur-
jective. T 1is also a homeomorphism. This can be easily seen by
the definition of the topologies on G*°(R) and Hom (R(G), C).

Therefore the homomorphism F' is an isomorphism of G*° onto
G*°(R) as topological groups. If ¢ belongs to G*(R), then w belongs
to Homg (R(G), C). So F induces an isomorphism of G onto G*(R).

In this case, if ¥ is a topological isomorphism of G onto G*, then
the homomorphism @=F-¥ is a topological isomorphism of G onto
G*(R). Theorem 1 is thus proved.

5. The duality theorem for Lie groups. For a Lie group,
we can give an intrinsic meaning to the duality theorem defined in
3 by the following theorem.

Theorem 2. Let G be a Lie group with a finite number of
connected components. Then G satisfies the duality theorem if
and only if G 1s a real affine algebraic group and every (continuous)
representation of G is a rational representation. When this
condition is satisfied, the proper automorphism group G*° of R(G)
can be regarded as the complexification of the real algebraic group G.

Let G be a real affine algebraic group whose every representa-
tion is rational. Then G is a Lie group with a finite number of
components. The real representative algebra Rx(G)={f € R(g); f=f}
contained in the affine algebra A (the algebra of everywhere
defined rational functions on G) of G, because every representation is
rational. On the other hand, ACR.(G), because A=R[D,,, ---, D,,,
(det D)~*] for a faithful rational representation D of G. As G
is a real affine algebraic set, #:g—w, is a bijection of G onto
Hom (Rg(G), R). On the other hand, the restriction map of
Homp (R(G), C) into Hom (Ri(G), R) is clearly a bijection. So the
canonical homomorphism ¥ is a bijection of G onto G*. To prove
¥ is also a homeomorphism, let {x,, ---, x,} be a set of generators of
the affine algebra A=Rg(G). Then the mappin w—(w(x,), ---, ®(x,))
is a homeomorphism of Hom (Rg(G), R) onto an affine algebraic subset
of R". So Hom (Rx(G), R), Homg (R(G), C) and G* are locally compact
Hausdorff spaces. On the other hand G, being a Lie group with a
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finite number of components, is the union of a countable number
of compact sets. So the continuous isomorphism ¥ of G onto G*
is an open mapping and therefore an isomorphism as topological
groups. Thus the duality theorem holds for the group G. In this
case the proper automorphism group G*° is the complex algebraic
group with the affine algebra R(G) which is the scalar extension
of Rr(G) (R(G)=Rr(G)®rC). So G*° is the complexification of G.

Conversely, let G be a Lie group with a finite number of com-
ponents for which the duality theorem holds. Let G, be the connected
component of ¢ in G. Then the topological isomorphism ¥ maps G,
onto the connected component of G*. Therefore by a theorem of
G. Hochschild and G. D. Mostow [3, Theorem 7.17, R(G) is finitely
generated. So the algebra Ri(G) is also finitely generated. The
duality theorem for G assures that the canonical mapping 6: g— o,
is a Dbijection of G onto Hom (Rx(G), R). So G is a real affine
algebraic set with the affine algebra Rg(G). As the left translates
of any element f in Rp(G) span a finite dimensional subspace, there
are a finite number of elements a,, ---, a,, b, -++, b, in Rx(G) such
that f(gh)=>] a,(9)b;(h) for any g, h in G. So the mapping (g, h)—gh
is regular (=everywhere defined rational) mapping. Moreover, if D
belongs to Rp={D e R; D=D} then the contragredient representation
D*(g)=tD(g~") belongs to Rg, so the mapping g—g~' is also regular.
Thus the group G is a real affine algebraic group with the affine
algebra Rg(G). Therefore every continuous real representation of
G is a rational representation. So every (continuous) representation
over C is also rational. This completes the proof of Theorem 2.
Theorem 1 and 2 explain the reason why the Tannaka buality
theorem of connected semisimple Lie groups obtained by Harish-
Chandra [4] has a slightly weaker form than that is defined in 2
of this note. In fact, a connected semisimple Lie group is not
necessarily an algebraic group.
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