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179. A Metric Characterization of the Cartesean
Decomposition in a e.Algebra

Takayuki FURUTA*) and Ritsuo NAKAMOT0**)

(Comm. by Kinjir6 KUNUGI, M. J.A., Oct. 12, 1968)

1o Ky Fan and A. J. Hoffman [2] observed, among others:
If T is an n n matrix and if an n n matrix A satisfies A-Re T,

then
( 1 ) T--A I[, =< T--H][,
or any hermitean n X n matrix H, where [C [, is a unitarily invariant
norm o C.

Very recently, the theorem o Fan and I-Ioffman is generalized
or an operator T belonging to a finite actor by Marie and Hisashi
Choda [1] under the restriction that the norm is defined by
( 2 ) [C . (C*C),
where is the trace of factor. But the norm the condition (2) is too
restrictive so that the theorem of Fan and Hoffman is excluded.

In the present note, we shall give an abstract formulation which
includes ,the both of the theorems of Fan-Hoffman and Choda.
Through this formulation, we shall show that the self adjoint opera-
tor A in the Cartesean Decomposition is the nearest self adjoint
opertor to the given T in -algebra I, which will give a metric char-
acterization of the Cartesean Decomposition in -algebra I.

We should like to express here our cordial thanks to Professor
Masahiro Nakamura for his kind advice in the preparation of this
paper.

2. Throughout this note, we shall assume that be a linear
space with an involution x-*x*([3])
I 1 (x+ y)*=*x*+ fl*y*,
1 2 x** x,
where * is the complex conjugate of . An element T of I will be
called self adjoint or hermitean if T*-T. It is easy to deduce that
the set I of all hermitean members of I is a real linear subspace of
I, whence is convex. Let T be an element of I, then we have the
cartesean decomposition of T by

(3) T=Re T+iIm T,
where Re T and Im T are self adjoint which are defined by
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1( 4 ) Re T-- (T+ T*) and Im T--(T--T*)
which are called the real part and imaginary part of T respectively.
Now we shall assume further that ?I is a normed space and that the
norm is adjoint preserving in the sense that
( 5 ) T* II--II T II.
This weakens the unitary invariance o norm in Fan and Hoffman’s
theorem. It is easy to show that involution is continuous under (5).
Consequently is closed if (5) is satisfied.

The ollowing formulation includes the theorems o Fan-Hoffman
and Choda

Theorem 1.

then
If is a -linear normed space which satisfied (5),

T-T+T* lIT--HI2
holds for any self ad]oint operator H in .

The proof of the theorem is completely same as that of Fan and
Hoffman.

< 1 lIT_HI[+ 1 T*= -1[ -Ul

T-H
3. We shall give a converse of Theorem 1 in the case of

C*-algebra.

Theorem 2. Let T be an operator in a C*-algebra with a faithful
trace , which satisfies (1), then A-Re T.

ProoL Let T=A’+iB be the cartesean decomposition of T. By
the definition of the norm and the assumption (1) we have the follow-
ing inequality

0 <= ((T--A)*(T-- A)) <= ((T--H)*(T--H))
2or any self adjoint operator H in .
Hence we have

O<= p((A’--A,--iB)(A’-A + iB)) <= q((A’--H--iB)(A’--H+ iB)).

This means

0<= ((A’ A): / B) <__ q((A’- H):+ B:)

which is equivalent to

0 __< (?((A’ A)’) _<_ q((A’ H)).
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Since H is any self adjoint operator in /, we put H-A’, so we get

( 6 ) q((A’-A)) 0.

(A’-A) is positive and ? is aithful, (6) implies

A A’ Re T. q.e.d.
During the preparation of this paper, Proessor M. Nakamura kindly
inormed us in his private letter that Theorem 2 in the ease o finite
aetors had been proved by M. Choda and H. Choda independently.

4. Now we shall give a generalization o Theorem 2.
Theorem 3. If is a -linear normed space which satisfies (5).

Moreover if the norm is strictly convex, then the following two condi-
tions are equivalent"
(i ) A is a real par of T,
(ii) A self ad]oint operator A satisfies (1).

Proof. We have only to prove that (ii) implies (i) since the con-

verse is valid in Theorem 1. Put H---I(T/ T*) in (1). On the other
2

hand by Theorem 1 we have
T--H _-< T--A

since we may ake A instead of H in Theorem 1. Thus we get

by the assumption (1). However 9/ is convex closed and our norm is
strictly convex, there exists a unique A in ?/ with minimum distance
T--A so we can conclude

A=H=Re T.
So the proof is complete.

The strictly convexity of norm in Theorem 3 cannot be removed.
We show

Theorem 4. If is a h-linear normed space which satisfies (5)
without the strictly convexity of norm, then the implication (ii)-.(i)
does not always hold.

Proof. Let T= 0 be a matrix of 33 on a 3-dimensional
2

Euclidean space E.
We define the norm o T as usual

IIT]I--sup Tx]l
for every unit vector x in E. We have

ReT-- 0 and I[T--ReTII-- 00-1 --1.
1 010



804 T. FURUTA and R. NAKAMOTO [Vol. 44,

Let a self adjoint operator A’= 0 A’:Re T.
1

100
But IIT--A’II- 00-I -I. Thus IIT-A’[I=IIT-Re

010

This shows the failure of implication (ii)-(i). In this case the matrix
norm I]T]I is not strictly convex. So we et the proof of Theorem 4.
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