172. Semigroups Satisfying $xy^m = yx^m = (xy^m)^n$

By D. G. MEAD and Takayuki TAMURA University of California, Davis, California (Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1968)

Recently E. J. Tully [5] determined the semigroups satisfying an identity of the form $xy = y^m x^n$; Tamura [4], one of the authors, studied the semigroups satisfying an identity $xy = y^{m_1}x^{n_1}\cdots y^{m_k}x^{n_k}$; and Mead [2], the other author, found a necessary and sufficient condition in order that an implication, $x^n y^m = y^k x^l \rightarrow x^n y^m = y^n x^m$, hold in all semigroups. Related to these works the purpose of this paper is to find the structure of semigroups satisfying an identity of the form

$$(*) \qquad xy^m = yx^m = (xy^m)^n, \qquad n > 1.$$

Let L be a semilattice and $\{S_{\alpha} : \alpha \in L\}$ be a family of disjoint semigroups. If a semigroup S is a union of disjoint subsemigroups $S'_{\alpha}, \alpha \in L$, and if S'_{α} is isomorphic with S_{α} for all α and $S'_{\alpha}S'_{\beta} \subseteq S'_{\alpha\beta}$ for all $\alpha, \beta \in L$, then S is called a semilattice-union of $S_{\alpha}, \alpha \in L$, or a semilattice of $S_{\alpha}, \alpha \in L$. A semigroup S is called a Clifford semigroup if S is a union of groups.

Lemma. A Clifford semigroup S is commutative if and only if S is a semilattice-union of abelian groups.

Proof. S is a semilattice-union of completely simple semigroups S_{α} by Theorem 4.6 [1]. Since S is commutative, each S_{α} is an abelian group. The converse is obtained from Theorem 4.11 [1].

Let I be an ideal of a semigroup S and $S/I \cong Z$. Then S is called an ideal extension of I by Z.

Theorem. The following three statements are equivalent.

(1) A semigroup S satisfies the identity (*).

(2) A semigroup S contains a commutative Clifford subsemigroup M and satisfies

- (2.1) $x^{k+1}=x$ for all $x \in M$, where k is the greatest common divisor of m-1 and n-1.
- (2.2) $xy^m \in M$ for all $x, y \in S$.

(3) A semigroup S is a semilattice-union of semigroups S_{α} , $\alpha \in L$, such that each S_{α} is an ideal extension of a group G_{α} by Z_{α} and the following conditions are satisfied:

(3.1) Each G_{α} is abelian and satisfies $x^{k} = e$ for all $x \in G_{\alpha}$, where e is the identity element of G_{α} , k being defined in (2.1). (3.2) Z_{α} satisfies $xy^m = 0$ for all $x, y \in Z_{\alpha}$.

(3.3) If $x_{\alpha} \in S_{\alpha}$ and $y_{\beta} \in S_{\beta}$, $\alpha \neq \beta$, then $x_{\alpha}y_{\beta}^{m} \in G_{\alpha\beta}$.

Proof. (1) \rightarrow (2). Suppose that a semigroup S satisfies the identity (*). Let $M = \{xy^m : x, y \in S\}$. M is a subsemigroup of S and $z = z^n$, n > 1, for all $z \in M$, by (*). Since every element of M is of index 1, M is a union of groups (Ex. 1.7, 6(a), p. 23 [1]), hence M is regular (p. 26 [1]). Also by (*) any two idempotents of M commute. Therefore S is an inverse semigroup by Theorem 1.17, [1]. According to Ex. 4.2, 2, p. 129 [1], M is a semilattice-union of groups, say

$$M=\bigcup_{\alpha\in L}G_{\alpha}.$$

The identity (*) in the groups G_{α} turns out to be

$$x = x^m = x^n$$
 and $xy = yx$ for all $x, y \in G_{\alpha}$,

that is, G_{α} is abelian and satisfies (2.1). By the Lemma the Clifford semigroup M is commutative. (2.2) is clear by the definition of M.

(2) \rightarrow (3). Assume (2), $M = \bigcup_{\alpha \in L} G_{\alpha}$, G_{α} abelian groups. By (2.1) and (2.2) there are positive integers l such that x^{l} are idempotent for all $x \in S$. For example l = (m+1)(n-1). First we notice that

(4) if e is any idempotent, eze=ze for all $z \in S$ since e, $ze \in M$ by (2.2) and M is commutative. Let $x^{l}=e$, $y^{l}=f$, and $(xy)^{l}=h$ where e, f, h are idempotents. To prove h=ef,

$$h = (xy)^{l} = (xy)^{l}h = \{(xh)(yh)\}^{l} \text{ by } (4)$$

$$= (xh)^{l}(yh)^{l} \text{ by commutativity of } M$$

$$= (x^{l}h)(y^{l}h) \text{ by } (4)$$

$$= (eh)(fh)$$

$$= efh \text{ by } (4)$$

and $ef = x^i y^i = x^i y^i f = x^i f y^i f = (xy)^i f = hf$ by the same reason. Hence h = efh and ef = hf. Since the idempotents from a semilattice h = efh = hfh = hf = ef. Consequently we have

$$(5) \qquad (xy)^l = x^l y^l$$

that is, the mapping $x \to x^i$ is a homomorphism of S onto the semilattice L_1 of all idempotents of S. Clearly $L_1 \subseteq M$ and L_1 is the set of identity elements of G_{α} , $\alpha \in L$; hence $L_1 \cong L$, so we identify L_1 with L. Let e_{α} be the identity element of G_{α} . We define S_{α} by

$$S_{\alpha} = \{ x \in S : x^{l} = e_{\alpha} \}.$$

Then $G_{\alpha} \subseteq S_{\alpha}$ and (6)

 $S = \bigcup_{\alpha \in L} S_{\alpha}.$

Each S_{α} is unipotent, i.e., has a unique idempotent e_{α} , and S_{α} is inversible in the sense of [3], and it is easily seen that

$$S_{\alpha}e_{\alpha}=G_{\alpha}$$

hence G_{α} is an ideal of S_{α} (see [3]). The condition (3.1) is obvious by the assumption; (3.2) and (3.3) are obtained by (2.2).

(3) \rightarrow (1). Assume (3) and let $S = \bigcup_{\alpha \in L} S_{\alpha}$ and $M = \bigcup_{\alpha \in L} G_{\alpha}$. Since G_{α} is abelian, M is commutative by the Lemma. By (3.2) and (3.3) $x_{\alpha}y_{\beta}^{m} \in G_{\alpha\beta}$ for all $x_{\alpha} \in S_{\alpha}$, $y_{\beta} \in S_{\beta}$. It follows from (3.1) that $x_{\alpha}y_{\beta}^{m} = (x_{\alpha}y_{\beta}^{m})^{n}$. We need to prove $x_{\alpha}y_{\beta}^{m} = y_{\beta}x_{\alpha}^{m}$. Both $x_{\alpha}y_{\beta}^{m}$ and $y_{\beta}x_{\alpha}^{m}$ are in $G_{\alpha\beta}$. Since M is commutative and $e, ze \in M$, we can apply (4) to the present case again. Using (4) and (3.1)

$$\begin{aligned} x_{\alpha}y_{\beta}^{m} &= x_{\alpha}y_{\beta}^{m}e_{\alpha\beta} = x_{\alpha}e_{\alpha\beta}(y_{\beta}e_{\alpha\beta})^{m} = (x_{\alpha}e_{\alpha\beta})(y_{\beta}e_{\alpha\beta}) \\ &= (y_{\beta}e_{\alpha\beta})(x_{\alpha}e_{\alpha\beta}) = (y_{\beta}e_{\alpha\beta})(x_{\alpha}e_{\alpha\beta})^{m} = y_{\beta}x_{\alpha}^{m}. \end{aligned}$$

This completes the proof of the theorem.

Remark 1. We can prove directly $(1)\rightarrow(3)$ by means of (5), and the minimum l_0 of *l*'s which act in the proof of $(2)\rightarrow(3)$ is determined as follows:

 l_0 is the minimum of the positive integers greater than or equal to m+1 and divisible by k.

Remark 2. M is a left ideal of S but need not be an ideal. Example. The semigroup S defined by the Cayley table :

	a	b	С	d
a	a	a	a	a
b	a	a	a	a
c	a	a	a	a
d	a	b	c	d

S satisfies the identity $xy^2 = yx^2 = (xy^2)^2$ and $M = \{a, d\}$ is a left ideal but not a right ideal.

References

- A. H. Clifford and G. B. Preston: The algebraic theory of semigroups.
 I. Math. Surveys, 7, Amer. Math. Soc., Providence, R. I. (1961).
- [2] D. Mead: Semigroups satisfying certain identities (to be published).
- [3] Takayuki Tamura: Note on unipotent inversible semigroups. Kodai Math. Sem. Rep., 93-95 (1954).
- [4] —: Semigroups satisfying the identity xy = f(x, y) (to be published).
- [5] E. J. Tully: Semigroups satisfying an identity of the form $xy=y^mx^n$ (to be published).

No. 8]