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172. Semigroups Satisfying xyn=yx=(xyrn)

By D.G. MEAD and Takayuki TAMURA
University of California, Davis, California

(Comm. by Kenjiro SHODA, M. . h., Oct. 12, 1968)

Recently E. J. Tully [5] determined the semigroups satisfying an
identity of the form xy=y’x’; Tamura [4], one of the authors,
studied the semigroups satisfying an identity xy--y’xn...ymxn;
and Mead [2], the other author, found a necessary and sufficient con-
dition in order that an implication, xny=yxxny=ynx, hold in
all semigroups. Related to these works the purpose of this paper is
to find the structure of semigroups satisfying an identity of the form

( ) xy--yx--(xy)n, n 1.

Let L be a semilattice and {S.’a e L} be a family of disjoint
semigroups. If a semigroup S is a union of disjoint subsemigroups
S’., e L, and i S’. is isomorphic with S. for all a and S.SS. or
all a,/9 e L, then S is called a semilattice-union o S., e L, or a semi-
lattice of S., e L. A semigroup S is called a Clifford semigroup if
S is a union of groups.

Lemma. A Clifford semigroup S is commutative if and only if S
is a semilattice-union of abelian groups.

Proof. S is a semilattice-union of completely simple semigroups
S. by Theorem 4.6 [1]. Since S is commutative, each S. is an abelian
group. The converse is obtained from Theorem 4.11 [1].

Let I be an ideal of a semigroup S and S/I Z. Then S is called
an ideal extension of I by Z.

Theorem. The following three statements are equivalent.
1 ) A semigroup S satisfies the identity (.).

(2) A semigroup S contains a commutative Clifford subsemi-
group M and satisfies

(2.1) x+=x for all x M, where k is the greatest common
divisor of m-1 and n--1.

(2.2) xy e M for all x, y e S.
(3) A semigroup S is a semilattice-union of semigroups S.,

a e L, such that each S. is an ideal extension of a group G. by Z. and
the following conditions are satisfied:

(3.1) Each G. is abelian and satisfies x=e for all x e G.,
where e is the identity element of G., k being defined
in (2.1).
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(3.2) Z. satisfies xy=O for all x, y e Z..
(3.3) If x. e S. and y e S, =/= fl, then x.y e G..

Proof. (1)(2). Suppose that a semigroup S satisfies the
identity (,). Let M={xy x, y e S}. M is a subsemigroup of S and
z-zn, nl, or all z e M, by (,). Since every element of M is o in-
dex 1, M is a union of groups (Ex. 1.7, 6(a), p. 23 [1]), hence M is reg-
ular (p. 26 [1]). Also by (,) any two idempotents of M commute.
Therefore S is an inverse semigroup by Theorem 1.17, [1]. According
to Ex. 4.2, 2, p. 129 [1], M is a semilattice-union o groups, say

M-jG..

The identity (.) in the groups G. turns out to be
x-x-x and xy-yx forall x,y

that is, G. is abelian and satisfies (2.1). By the Lemma the Clifford
semigroup M is commutative. (2.2) is clear by the definition o M.

(2)-(3). Assume (2), M- (2 G., G. abelian groups. By (2.1)

and (2.2) there are positive integers such that x are idempotent for
all x e S. For example 1- (m+ l)(n-1). First we notice that

(4) i e.is any idempotent, eze-ze or all z e S
since e, ze M by (2.2) and M is commutative. Let x=e, y-f, and
(xy)- h where e, f, h are idempotents.

h-(xy)=(xy)h= {(xh)(yh)}
=(xh)(yh)
=(xh)(yh)
--(eh)(fh)
=efh

To prove h=ef,
by (4)
by commutativity of M
by (4)

by (4)
and ef- xy xytf xfyf (xy)f hf by the same reason. Hence
h- efh and ef hf. Since the idempotents rom a semilattice h= efh
=hfh-hf-ef. Consequently we have

5 ) (xy)-xy
that is, the mapping xx is a homomorphism of S onto the semilat-
rice L o all idempotents o S. Clearly LM and L is the set
identity elements of G., a e L hence LL, so we identify L with L.
Let e. be the identity element of G.. We define S. by

S.-{x e S" x=e.}.
Then G.S. and

(6) S= S..
Each S. is unipotent, i.e., has a unique idempotent e., and S. is inver-
sible in the sense of [3], and it is easily seen that

hence G. is an ideal of S. (see [3]). The condition (3.1) is obvious by
the assumption; (3.2) and (3.3) are obtained by (2.2).
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(3)-*(1). Assume (3) and let S- S and M- ( G. Since
aL aL

G is abelian, M is commutative by the Lemma. By (3.2) and (3.3)
xye G for all xeS, y eS. It follows from (3.1) that xy
=(xy)n. We need to prove xy-yx. Both xy and yx are in

G. Since M is commutative and e, ze e M, we can apply (4) to the
present case again. Using (4) and (3.1)

x.y-- x.y’e. x.e.(ye.) (xe.)(ye)
(ye)(x.e)- (ye)(x.e) yxy.

This completes the proof of the theorem.
Remark 1. We can prove directly (1)--(3) by means of (5), and

the minimum 10 of l’s which act in the proof of (2)-(3) is determined
as.ollows

l0 is the minimum of the positive integers greater than or equal
to m+ 1 and divisible by k.

Remark 2. M is a left ideal of S but need not be an ideal.
Example. The semigroup S defined by the Cayley table"

a b c d

a a a a
a a a
a b c d

S satisfies the identity xy=yx-(xyO and M-{a, d} is a let ideal
but not a right ideal.
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