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1. Recently, generalizing the notions of prime ideals and primary
ideals in rings, Murata, Kurata, and Marubayashi [1] have considered
the notions of f-prime ideals and f-primary ideals in rings, and obtain-
ed, along with other things, the uniqueness theorem of f-primary de-
compositions of ideals, under certain assumptions.

Continued from [1], in this paper, we shall investigate the ideals
which can be represented as the intersection of a finite number of f-
primary ideals.

Let R be an arbitrary ring. Throughout this paper, ideals will
always mean two-sided ideals in R and we shall assume the following
conditions as same as in [1]:

(B) For any ideal A and any ideal B not contained in r(4), we
have A: B+J.

(y) If Sis an f-system with kernel S*, and if, for any ideal A4,
SNA is not empty, then so is S*N A.

(0) For any f-primary ideal Q, we have Q: Q=RE.

2. Isolated components

Definition 1. Let A be an ideal and let S be an f-system. The
isolated component A g of A determined by S will be defined as follows:

Ag= {UseS(A 1 8) (if S is not empty)
A @Gf S is empty).

For any f-system S+, C(S) is an f-prime ideal containing 7((0)).
If seS, then s r((0)) and hence by the assumption (B8) we have
(0):s+<. This shows that A :s and whence Ay is not empty. So, it
can be proved similarly as in [1] that Ag is an ideal containing A.

Another characterization of f-primary ideals can be given by
means of isolated components.

Proposition 2. An ideal Q is f-primary if and only if, for any
f-system S, either Qs=@ or Qs=R holds.

Proof. Suppose that Q is f-primary. If S is empty, then the
assertion is trivial. Now we may suppose that there exists a non-
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empty f-system S such that Qg#Q. Let b be an element such as
beQs and be Q. Then there exists at least one s¢S such that
f)f()CQ. Since Qis f-primary, we have s € 7(Q), and thus we can
choose an element o € SN Q. Since Q: a=R by the assumption (J), we
have Qs=R.

Conversely, let us suppose that, for any f-system S, either Qs=Q
or Qs=R holds and that @ is not f-primary. Then there exist b ¢ @ and
¢ ¢ r(Q) such that f(c)f(b)C Q. Since ce r(Q), for some f-prime ideal
P wehave QCP and ceg P. If we set S=C(P), then S is an f-system
and b € Q5. Therefore Q=Q;. It follows from the assumption that
Qs=R and hence there exists at least one s ¢ S such that f(s)f(c)Z Q.
Since P is an f-prime ideal containing @, we have, by [1, Lemma 1.4],
either s e P or ¢ e P, which is impossible in any case.

If an ideal A has an f-primary decomposition, then the isolated
component of A can be expressed interms of its f-primary components :

Theorem 3. Let A be an ideal, and let S be an f-system. Sup-
pose that A=Q,NQ,N---NQ,, where each Q, is an f-primary ideal.
If 7(Q,) meet S for m+1<i<n but not for 1<i<m, then we have

As=QNQN - NQy.
If r(Q)) meet S for 1<i<n, then A;s=R.

Proof. If S is empty, then the assertion is trivial. We may
therefore assume that S is not empty. Let x e A;. Then, for some
se S, wehave f(9)f(®)CA=Q,:NQ,N---NQ,. Consequently, if 14
<m, since s ¢ 1(Q,), we have 2 ¢ Q,, and hence A;CQ,NQ,N---NQ,.

For m+1<j<n, 7(Q,) NS is not empty and hence so is Q,NS and
also, by the assumption (y), so is Q;NS*. Since S* is an m-system,
for s, € QriNS* and s,.5€ Q,,.,NS*, there exists z<€ R such that
8 5=Sm+188m 12 € Q1N Q. NS*.  Similarly, there exists 2’ ¢ R such
that  s7.5=80,02'Sm43 € Qmi1N QmizN Qs NS*  for s,.56 Qi NS*.
Continuing in this way, we obtain after a finite number of steps an
element s, which isin Q,,; N Qn..N -+ - NQ, NS*. Thus it follows from
the assumption (0) that Q,:s,=R for m+1<j<n and hence
@niiNQpisN-+-NQ:s,=R. On the other hand, we have
NN - NP C@NAEN---NQ:s,. Therefore we have
an an <N Qm;A : 3;;145“

If, for 1<i<n, r(Q,) meet S, then the above proof shows that
there exists an element s/, ¢ Q,NQ,N .- NQ,NS* which satisfies that

@N@,N---NQY:s,=R. Thus we have Ag=R. This completes
the proof.

Let S be an f-system. Combining this theorem with Proposition
2, we obtain that if @ is f-primary, then Qg is R or @ according as
7(Q) meets or does not meet S.
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From Theorem 3, we see at once

Corollary 4. A decomposable ideal has at most a finite number
of isolated components.

3. Isolated set

Lemma 5. Suppose that an ideal A has anf-primary decomposi-
tion: A=Q;NQ,N---NQ,. Then any f-prime ideal P which con-
tains A must contain at least one of the Q,.

Proof. If P=R, then the assertion is trivial, and so we may
suppose that there exists an f-prime ideal PR such that ACP and
Q;ZP for 1<i<n. If we put S=C(P), then S is an f-system and
SNQ; and whence SNr(Q,) is not empty for all . We have, by
Theorem 3, As=R. Thus, for any element x e R, there exists some
element s € S such that f(s) f(®)C A holds. Thisimplies, by [1, Lemma
1.4}, that x ¢ P, a contradiction.

Suppose that an ideal A has an f-primary decomposition, and let
A=Q;NQ,N-.--NQA, be its normal decomposgition. Then as is seen
from [1, Theorem 3.7], the number of f-primary components and the
radicals of f-primary components depend only on A and not on the
particular normal decomposition considered.

Definition 6. A subset {r(Q), 7(Qy), - - -, 7(Q,)} of the radicals is
called an isolated set of A, if for m+1<j<n, each 7(Q,) is not con-
tained in any of 7(Q,) for 1<i<m.

Proposition 7. Suppose that an ideal A has an f-primary de-
composition. Let A=Q,NQ,N---NQ, be its normal decomposition,
and let r(Q;)= P be the expression of r(Q,) as the intersection of
all the minimal f-prime ideals belonging to Q,. Then the following
conditions are equivalent :

(1) The set {r(Qy, r(Qy, - - -, r(Q,)} is an isolated set of A,

2) For each Q;, 1=i<m, there exists at least one minimal f-
prime ideal P;,,=PF such that P} does not contain P, for all j, m+1
<j<n, and for all k,

@) FEach 1Q,), 1<i<m, does mnot contain the intersection
Qm+ln Qm+zn <N Qn°

We come now to the second uniqueness theorem for normal de-
compositions:

Theorem 8. Suppose that an ideal A has an f-primary decom-
position, and let A=Q,NQ,N .- NQ, be its normal decomposition. If
{r(Qy, r(Qy, - - -, r(Q,)} ts an isolated set of A, then Q:NQ,N - NQ,,
depends only on r(Q,), 1(Q,), - - -, 7(Q,,) and not on the particular normal
decomposition of A.

Proof. Let A=Q,NQ,N---NQ,=Q;NQ;N .- - NQ, be two nor-
mal decompositions of 4 such that 7(Q)=7r(Q) for 1<i<n. If we
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denote (27rl.+1m Qm+zn <N Qn and Q:n+1n Q;n+2n - N Q{n by Q and QI
respectively, then by Proposition 7, (8), Q is not contained in any of
7(Q,) for 1<i<m, and hence it follows from [1, Proposition 3.5] that
Q,:Q=Q, and also Q;: @=Q) for 1<i<m. But on the other hand,
since @,2Q for m+1<j<mn, by the assumption (9) we have R=Q;: Q,
CQ,:Q and hence Q;: Q=R. These relations show that @, NQ.N - --
NQ,=4:0=Q/NQN.---NQ,NQ :Q). Thus we have Q;NQ,N---
NQR,CRANN---NQ,, and similarly we have QNQ;N---NQ,,
cCR.N@N---NQ,, which completes the proof.

Remark. It follows from Proposition 7,(2) that for each @,
1<i<m, there exists at least one minimal f-prime ideal P¥ belonging
to Q, such that P¥ does not contain P,, for all j, m+1<j<n, and for
all k. Since any f-prime ideal containing an ideal contains a minimal
JS-prime ideal belonging to it, for m+1<j<n each Q, is not contained
in any of P¥ for 1<i<m. Theorem 3 then shows that, for 1<i<m,
each A Py CAN be expressed as the intersection of certain of @, @,, - -
-+, @, one of which is certainly @,. It follows that we have

QN@N - NQr=ApNApN-- - NAps.

Since each minimal element of the set {r(Q), r(Q.), - -, (@)}
form on its own an isolated set of A, we see at once

Corollary 9. Let 7(Q) be a minimal element in the set
{r(Q, (@), - - -, (@)} of the radicals of the f-primary components of
A. Then the f-primary component corresponding to (Q) is the same
for all normal decompositions of A.
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