59. A Geometric Condition for Smoothability of Bounded Combinatorial Manifold

By Kazuaki Kobayashi
Kobe University
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1969)

1. Introduction. If we modify the paper [3] as follows, then Smoothability Theorem of that paper can be extended the case of bounded combinatorial manifold. For general terminology and definition, see [3].

Let M be a compact bounded combinatorial n-manifold piecewise linearly imbedded in a combinatorial ($n+k$)-manifold W^{n+k} without boundary and X, Y, Z be simplicial divisions of $M, \partial M, W$ such that X and Y are subcomplexes of Z and X respectively. Then $N(X, Z) \bmod Y$ denotes the star neighborhood of X in $Z \bmod Y$, that is, the polyhedron consists of simplices of Z containing simplices whose interior is contained in $|X-Y|$.

Definition 1. Let M be a compact bounded n-manifold imbedded piecewise linearly in euclidean $(n+k)$-space $R, k \geqq 1$. We say that M is in smoothable position in R if the following is satisfied.

Let K_{0} and L_{0} be simplicial divisions of M and R respectively, where K_{0} is a complete subcomplex of L_{0}. And let H_{0} be simplicial division of ∂M, where H_{0} is a complete subcomplex of K_{0}.

Then there exist piecewise linear proper imbeddings

$$
\varphi_{i}: M_{i} \rightarrow \partial\left(N\left(K_{i}^{\prime}, L_{i}^{\prime}\right) \bmod H_{i}^{\prime}\right)-\operatorname{Int} N\left(H_{i}^{\prime}, \partial\left(N\left(K_{i}^{\prime}, L_{i}^{\prime}\right) \bmod H_{i}^{\prime}\right)\right)
$$

for each $0 \leqq i \leqq k-1$, where $M_{0}=M$ and for $1 \leqq i \leqq k, M_{i}=\varphi_{i-1}\left(M_{i-1}\right)$ and where K_{i}, H_{i}, and L_{i} are simplicial subdivisions of $M_{i}, \partial M_{i}$ and $\partial\left(N\left(K_{i-1}^{\prime}, L_{i-1}^{\prime}\right) \bmod H_{i-1}^{\prime}\right)-\operatorname{Int} N\left(H_{i-1}^{\prime}, \partial\left(N\left(K_{i-1}^{\prime}, L_{i-1}^{\prime}\right) \bmod H_{i-1}^{\prime}\right)\right)$.

In the text, however, W_{i} stands for
$\partial\left(N\left(K_{i-1}^{\prime}, L_{i-1}^{\prime}\right) \bmod H_{i-1}^{\prime}\right)-\operatorname{Int} N\left(H_{i-1}^{\prime}, \partial\left(N\left(K_{i-1}^{\prime}, L_{i-1}^{\prime}\right) \bmod H_{i-1}^{\prime}\right)\right)$
and L_{i} will be the subcomplex of L_{i-1}^{\prime} covering W_{i} for each $1 \leqq i \leqq k$.
Then $\partial W_{i}=\partial N\left(H_{i-1}^{\prime}, \partial\left(N\left(K_{i-1}^{\prime}, L_{i-1}^{\prime}\right) \bmod H_{i-1}^{\prime}\right)\right)$.
Note that M_{i} is a combinatorial n-manifold with boundary, which is combinatorially equivalent to M, and W_{i} is a combinatorial ($n+k-i$)manifold with boundary, for each $1 \leqq i \leqq k$, satisfying $M_{i} \subset W_{i}$ and $W_{1} \supset W_{2} \supset \cdots \supset W_{k}$. Furthermore $N\left(K_{0}^{\prime}, L_{0}^{\prime}\right) \bmod H_{0}^{\prime}$ is a regular neighborhood of $M \bmod \partial M$ in R^{n+k} and $N\left(K_{i}^{\prime}, L_{i}^{\prime}\right) \bmod H_{i}^{\prime}$ is a regular neighborhood of $M_{i} \bmod \partial M_{i}$ in W_{i} in the sense of [1], $i=1$.

The extended result of [3] is the following.

Theorem 1. If a compact bounded combinatorial n-manifold M is in smoothable position in $(n+k)$-space $R, k \geqq 1$, then M is smoothable.

Theorem 2. If the regular neighborhood U of $M \bmod \partial M$ in R is combinatorially equivalent to $M \times B^{k}$ where B^{k} is a combinatorial n ball, then M is smoothable.

Proof. Using the uniqueness theorem for relative regular neighborhood [4 p. 21 Theorem 4.9] or [2], $U=N\left(K_{0}^{\prime}, L_{0}^{\prime}\right) \bmod H_{0}^{\prime}$ keeping M fixed where K_{0}, L_{0}, H_{0} are similar to Definition 1. Hence $N\left(K_{0}^{\prime}, L_{0}^{\prime}\right)$ $\bmod H_{0}^{\prime}=M \times B^{k}$ and by Theorem 1 it is sufficient to show that M is smoothable position in R under the above condition. Since $N\left(K_{0}^{\prime}, L_{0}^{\prime}\right)$ $\bmod H_{0}^{\prime}=M \times B^{k-1}$ there is a proper imbedding

$$
\varphi_{0}: M \rightarrow W_{1}=M \times S^{k-1}
$$

defined by taking $\varphi_{0}(x)=\left(x, x_{0}\right)$ for $x \in M_{0}$ where $S^{k-1}=\partial B^{k}$ is a combinatorial ($k-1$)-sphere and x_{0} is a fixed point of S^{k-1}.

Let B^{k-1} be a combinatorial $(k-1)$-ball of S^{k-1} containing x_{0} in the interior.

It is clear that $M \times B^{k-1}$ is a regular neighborhood of $M \times\left\{x_{0}\right\}\left(=M_{1}\right) \bmod \partial M_{1}$ in $M \times S^{k-1}\left(=W_{1}\right)$ and since there exists a subdivision L_{1} of $M \times S^{k-1}$ such that $M \times B^{k-1}, N\left(K_{1}^{\prime}, L_{1}^{\prime}\right) \bmod H_{1}^{\prime}$ are satisfying the condition of [4, Theorem 4.9], $N\left(K_{1}^{\prime}, L_{1}^{\prime}\right) \bmod H_{1}^{\prime}=M \times B^{k-1}$ and there is a proper imbedding

$$
\varphi_{1}: M_{1} \rightarrow W_{2} \cong M \times S^{k-2}
$$

defined by taking $y_{1}(y)=\left(y, y_{0}\right)$ for $y \in M$ where $S^{k-2}=\partial B^{k-1}$ and y_{0} is a fixed point of S^{k-2}, and so on. Hence M is smoothable position in R, and therefore Theorem 2 is proved.

Suppose that a combinatorial n-manifold M is in smoothable position in R. Using Definition $1, M_{k}$ is combinatorially equivalent to M. Therefore Theorem 1 follows from Theorem 3 below in accordance with [7, p. 159].

Theorem 3. Let a compact bounded n-manifold M be in smoothable position in euclidean $(n+k)$-space, $k \geqq 1$. Then M_{k} admits a transverse k-plane field over M_{k}.

Theorem 4. If the n-ball B^{n} is piecewise linearly imbedded in ($n+k$)-space $R, k \geqq 2$, then it is arbitrarily approximated by the n-ball which is in smoothable position.

Since proof of Theorem 3 is completely analogous to [3], it is omitted. In the following we prove Theorem 4.
2. Proof of Theorem 4. Let B^{n} be an n-ball piecewise linearly and locally flatly imbedded in R^{n+k}, then there exist simplicial divisions K, L of B^{n}, R^{n+k} respectively such that $\left(N\left(K^{\prime}, L^{\prime}\right) \bmod H^{\prime}, B^{n}\right)$ is an unknotted ball pair $\left(B^{n+k}, B^{n}\right)$ where H is a simplicial division of ∂B compatible with K [1, Corollary 10].

In fact if a pair is unknotted then it is locally flat, because we triangulate with a standard pair.

Since (B^{n+k}, B^{n}) is an unknotted ball pair, there exists a $P L$ homeomorphism

$$
h:\left(B^{n+k}, B^{n}\right) \rightarrow\left(I^{n+k}, I^{n}\right)
$$

where $I=(-1,1)$ and where I^{i} is imbedded in I^{i+1} as $I^{i} \times 0$ for $0 \leqq i \leqq n$ $+k-1$. Hence $N\left(K^{\prime}, L^{\prime}\right) \bmod H^{\prime} \cong B^{n} \times B^{k}$ therefore B^{n} is in smoothable position in R^{n+k} by Theorem 2.

On the other hand after Zeeman [8] locally knotting can not occur in codimension greater than 3.

Furthermore by [5, Corollary 1] any locally knotted proper embedding $f: B^{n} \rightarrow B^{n+2}$ is arbitrarily approximated by a locally flat embedding.

Therefore by the above remark we obtain the result.

References

[1] J. F. P. Hudson and E. C. Zeeman: On regular neighborhood. Proc. London Math. Soc., 11 (31), 719-745 (1964).
[2] L. S. Husch: On relative regular neighborhood. Preliminary report (Abstract 66T-212). Notices Amer. Math. Soc., 13, 386 (1966).
[3] K. Kudo and H. Noguchi: A geometric condition for smoothability of combinatorial manifold. Kodai Math. Sem. Rep., 15, 239-244 (1963).
[4] H. Noguchi: Classical Combinatorial Topology (Mimeograph). U. of Illinois.
[5] M. Ujihara: Obstruction to locally flat embeddings of bounded combinatorial manifolds. Proc. Japan Acad., 42, 438-440 (1966).
[6] J. H. C. Whitehead: On the homotopy type of manifolds. Ann. of Math., 41, 825-832 (1940).
[7] -: Manifolds with transverse fields in euclidean space. Ann. of Math., 73, 154-212 (1961).
[8] E. C. Zeeman: Unknotting combinatorial balls. Ann. of Math, 78, 501-526 (1963).

