74. Boundedness of Solutions to Nonlinear Equations in Hilbert Space

By Athanassios G. Kartsatos¹⁾
Department of Mathematics, University of Athens, Greece
(Comm. by Zyoiti Suetuna, M. J. A., May 12, 1969)

In what follows, by $H=(H,\langle,\rangle)$ we denote a complex Hilbert space, and by B=B(H,H), the space of all bounded linear operators from H into H, associated with the strong operator topology. The only topology that we consider on H is the strong one.

Our aim in this paper is to give a boundedness theorem for the solutions of the differential equation

$$\dot{x} = A(t)x + f(t, x),$$

where $x: I \to H$, $I = [t_0, +\infty)$, $t_0 \ge 0$, is a differentiable function on I with continuous first derivative, $I \to B$ is a continuous function on I, and $I : I \times H \to H$ is also continuous on $I \times H$.

- 1. Theorem 1. Consider (*) under the following assumptions:
- (i) there exists an operator valued function $Q: I \rightarrow B$ continuous and such that:

$$\dot{Q}(t) + Q(t)A(t) + A^*(t)Q(t) = 0,$$
 3) $t \in I$,

and

(i₂)
$$|\langle Q(t)x, x \rangle| \ge g(||x||),$$
 $(t, x) \in I \times H,$

where $g: \mathbf{R}_+ \to \mathbf{R}_+ = [0, +\infty)$ is continuous and $\limsup_{y \to +\infty} g(y) = +\infty$;

(ii)
$$||x|| \cdot ||f(t,x)|| \le p(t)g(||x||)$$
, with $p: I \to R_+$ continuous and such that $\int_{t_0}^{\infty} p(t)||Q(t)||dt < +\infty$;

then, if x(t), $t \in I$, is a solution of (*), it is bounded, i.e. there exists a constant k>0 such that $||x(t)|| \le k$ for every $t \in I$.

Proof. By differentiation of the function

$$(1) V(t) = \langle Q(t)x(t), x(t) \rangle,$$

we have

$$\dot{V}(t) = \langle \dot{Q}(t)x(t) + Q(t)\dot{x}(t), x(t) \rangle + \langle Q(t)x(t), \dot{x}(t) \rangle$$

$$= \langle \dot{Q}(t)x(t) + Q(t)A(t)x(t) + Q(t)f(t, x(t)), x(x) \rangle$$

$$+ \langle Q(t)x(t), A(t)x(t) + f(t, x(t)) \rangle$$

$$= \langle (\dot{Q}(t) + Q(t)A(t) + A^*(t)Q(t)x(t), x(t) \rangle$$

$$+ \langle Q(t)f(t, x(t)), x(t) \rangle + \langle Q(t)x(t), f(t, x(t)) \rangle$$

and by integration from t_0 to t ($t_0 \le t$), we have

- 1) This research was supported in part by a NATO grant.
- 2) The existence of solutions on I is assumed without further mention.
- 3) $A^*(t)$ is the adjoint of the operator A(t).

(3)
$$V(t) = V(t_0) + \int_{t_0}^t [\langle Q(s)f(s, x(s)), x(s) \rangle + \langle Q(s)x(s), f(s, x(s)) \rangle].$$
 From (3) it follows that

$$(4) \qquad g(\|x(t)\|) \leq |V(t)| \leq |V(t_0)| + 2 \int_{t_0}^{t} \|Q(s)\| \cdot \|f(s, x(s))\| \cdot \|x(s)\| ds \\ \leq |V(t_0)| + 2 \int_{t_0}^{t} p(s) \|Q(s)\| g(\|x(s)\|) ds,$$

which, by a well known inequality, gives

(5)
$$g(\|x(t)\|) \le |V(t_0)| \exp \left\{2 \int_{t_0}^t p(s) \|Q(s)\| ds\right\},$$

and this proves the theorem.

Remark 1. If $g(||x||) = \lambda ||x||^2$ (λ constant), then the condition (i₁) can be replaced by the following:

$$\int_{t_0}^{\infty} \lVert \dot{Q}(t) + Q(t)A(t) + A^*(t)Q(t) \rVert dt < + \infty.$$

In fact, in this case from (2) we obtain

$$egin{aligned} \lambda \|x(t)\|^2 &\leq |V(t)| \leq |V(t_0)| + \int_{t_0}^t \|\dot{Q}(s) + Q(s)A(s) + A^*(s)Q(s)\| \cdot \|x(s)\|^2 ds \ &+ 2\lambda \int_{t_0}^t p(s)\|Q(s)\| \cdot \|x(s)\|^2 ds, \end{aligned}$$

and the proof follows as in Theorem 1.

Remark 2. Theorem 1 contains partially as a special case a result of Schaeffer in [1], who considered the linear equation

$$\dot{x} = A(t)x$$

where A(t) is an $n \times n$ (complex) matrix function, and x an $n \times n$ (complex) vector.

2. Theorem 2. Suppose that in (*) the assumptions (i) are satisfied along with the following:

(ii_a)
$$||x_1 - x_2|| \cdot ||f(t, x_1) - f(t, x_2)|| \le \mu(t)g(x_1 - x_2)$$

for every $(t, x_1, x_2) \in I \times H \times H$, where g is as in (i_2) of Theorem 1, and $\mu: I \rightarrow \mathbf{R}_+$ is a continuous function such that

$$\int_{t_0}^{\infty} \mu(t) \|Q(t)\| dt < +\infty;$$

then if (*) has a bounded solution y(t), every solution of (*) is bounded.

Proof. Suppose that x(t) is any solution of (*); then for the difference x(t)-y(t) we have

(6)
$$x(t)-y(t)=A(t)(x(t)-y(t))+(f(t, x(t))-f(t, y(t)));$$

by differentiation of the function

$$(7) V_0(t) = \langle Q(t)(x(t) - y(t)), x(t) - y(t) \rangle,$$

and proceeding as in Theorem 1, we finally find

$$(8) \qquad g(\|x(t)-y(t)\|) \leq |V_{\scriptscriptstyle 0}(t)| \leq |V_{\scriptscriptstyle 0}(t_{\scriptscriptstyle 0})| \exp \left\{ 2 \int_{t_{\scriptscriptstyle 0}}^t \mu(s) \|Q(s)\| \, ds \right\}, \\ \text{thus}$$

(9)
$$||x(t)|| - ||y(t)|| \le ||x(t) - y(t)|| \le K$$
 for every $t \in I$,

and for some positive constant K.

Obviously, since y(t) is bounded, our assertion is true.

Reference

[1] A. J. Schaeffer: Boundedness of solutions to linear differential equations. Bull. Amer. Math. Soc., **74**, 508-511 (1968).