123. Korteweg-deVries Equation. II

Finite Difference Approximation

By Yoshinori Kametaka
(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1969)

In the preceding note [1] we announce the fact that the Cauchy problem for the KdV equation has global smooth solution uniquely for any sufficiently smooth initial data. Here we show the existence of the computable approximate solutions of the Cauchy problem for the $K d V$ equation by the method of finite difference schemes.

To approximate the Cauchy problem for the KdV equation

$$
\begin{array}{lll}
D_{t} u=u D u+D^{3} u & (x, t) \in R^{1} \times(0, \infty) & u=u(x, t) \\
u(x, 0)=f(x) & x \in R^{1} & D_{t}=\frac{\partial}{\partial t}, \tag{2}
\end{array} \quad D=\frac{\partial}{\partial x}
$$

We propose following special implicit finite difference scheme

$$
\begin{array}{ll}
D^{+} u_{j}^{n}=E u_{j}^{n+1} D_{0} u_{j}^{n+1}+D_{+} D_{-}^{2} u_{j}^{n+1} & j=0, \pm 1, \pm 2, \cdots \tag{3}\\
& n=0,1,2, \cdots \\
u_{j}^{0}=f_{j} & j=0, \pm 1, \pm 2, \cdots
\end{array}
$$

(4) $\quad u_{j}^{0}=f_{j}$

Here we use the following notations

$$
\begin{aligned}
u_{j}^{n} & =u(j h, n \Delta t) \quad h: \text { mesh-width } \quad \Delta t=\lambda h^{3}: \text { time-step } \\
D^{+} u_{j}^{n} & =\frac{1}{\Delta t}\left(u_{j}^{n+1}-u_{j}^{n}\right) \\
D_{+} u_{j}^{n} & =\frac{1}{h}\left(u_{j+1}^{n}-u_{j}^{n}\right) \\
D_{-} u_{j}^{n} & =\frac{1}{h}\left(u_{j}^{n}-u_{j-1}^{n}\right) \\
D_{0} u_{j}^{n} & =\frac{1}{2 h}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) \\
E u_{j}^{n} & =\frac{1}{3}\left(u_{j+1}^{n}+u_{j}^{n}+u_{j-1}^{n}\right)
\end{aligned}
$$

To solve (1) with respect to u_{j}^{n+1} we use following iteration

$$
\begin{array}{r}
u_{j}^{n+1-\frac{1}{m+1}}=u_{j}^{n}+\lambda h^{2} E u_{j}^{n+1-\frac{1}{m}} F u_{j}^{n+1-\frac{1}{m}}+8 \lambda G u_{j}^{n+1-\frac{1}{m}} \tag{5}\\
m=1,2,3, \cdots
\end{array}
$$

Here

$$
\begin{aligned}
& F u_{j}^{n}=\frac{1}{2}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) \\
& G u_{j}^{n}=\frac{1}{8}\left(u_{j+1}^{n}-3 u_{j}^{n}+3 u_{j-1}^{n}-u_{j-2}^{n}\right)
\end{aligned}
$$

There exist following a priori estimate for the solutions $u_{h}=u_{j}^{n}$ of (3) and (4).

Proposition 1. $\left\|u^{n}\right\|_{h} \leq\left\|u^{n-1}\right\|_{h} \leq \cdots \leq\|f\|_{h}$ for ${ }^{\forall} n \geq 1$
Here

$$
\left\|u^{n}\right\|_{h}^{2}=\sum_{j} h\left|u_{j}^{n}\right|^{2}
$$

Proposition 2. For any non-negative integer k, if we take

$$
\begin{aligned}
& t_{1}=1 / \sup _{0 \leq h \leq h_{0}} \alpha\left(\|f\|_{h}, \cdots,\left\|D_{+}^{3} f\right\|_{h}\right) \\
& t_{k}=1 / \sup _{0 \leq h \leq h_{0}}(1+k) \beta\left(\|f\|_{h}, \cdots,\left\|D_{+}^{3} f\right\|_{h}\right)
\end{aligned}
$$

Then there exist for $i+j \leq k$, a priori estimate

$$
\left\|D^{+i} D_{+}^{3 j} u^{n}\right\|_{h} \leq P_{k}\left(\|f\|_{h}, \cdots,\left\|D_{+}^{3 k} f\right\|_{h}\right)
$$

for $(n+k) \Delta t \leq t_{1}, t_{k}$. Here α, β and P_{k} are polynomials with positive coefficients.

Using Propositions 1 and 2 (in the case of $k=1$) we can show
Theorem 1. If

$$
\lambda<\frac{1}{8}, \quad h \leq \frac{1-8 \lambda}{\sqrt{\lambda}} 1 / \sup _{0 \leq h \leq h_{0}} \gamma\left(\|f\|_{h}, \cdots,\left\|D_{+}^{3} f\right\|_{h}\right) .
$$

Here γ is a polynomial with positive coefficients. Then the iteration scheme (5) converges for $n \Delta t \leq t_{1}$. Therefore the implicite scheme (3) and (4) is uniquely solvable for any sufficiently smooth initial data $f(x)$.

Next we show this computable solution $u_{h}=u_{j}^{n}$ really approximates the true solution of the Cauchy problem for the KdV equation corresponding the same initial data $f(x)$. First we consider the smooth interpolation of u_{h} using the discrete Fourier transformation with respect to t and x. We modify u_{j}^{n} by multiplying $\rho(t) \in \mathscr{D}$ which is equal to 1 for $0 \leq t \leq \frac{1}{2} \min \left(t_{1}, t_{k}\right)$ and equal to 0 for $t \geq \min \left(t_{1}, t_{k}\right)$. Next we extend u_{j}^{n} for $n<0$ in such a way as the estimate

$$
\sum_{i+j \leq k}\left\|D^{+i} D_{+}^{3 j} u^{n}\right\|_{h} \leq \text { const. } \sup _{m \geq 0} \sum_{i+j \leq k}\left\|D^{+i} D_{+}^{3 j} u^{m}\right\|_{h}
$$

holds for ${ }^{\forall} n<0$. This modified solution we also write $u_{n}=u_{j}^{n}$. The estimate in Proposition 2 remains true for any n for this modified u_{h}.

Definition.

$$
\begin{equation*}
\widetilde{u}_{h}(x, t)=\int_{\substack{|2 \xi \hbar| \leq 1 \\|2 \tau t t| \leq 1}} e^{2 \pi i(\xi x+\tau t)} \hat{u}_{h}(\xi, \tau) d \xi d \tau \tag{6}
\end{equation*}
$$

Here

It is obvious that

$$
\hat{u}_{h}(\xi, \tau)=\sum_{j, n} e^{-2 \pi i(\xi j h+\tau n \Delta t)} u_{j}^{n} h \Delta t
$$

$$
\tilde{u}_{n}(j h, n \Delta t)=u_{j}^{n}
$$

Therefore we call $\tilde{u}_{h}(x, t)$ the smooth interpolation of $u_{h}=u_{j}^{n}$.
Lemma 1.

$$
\left\|D^{+i} D_{+}^{j} u_{h}\right\|_{L_{h}^{2}\left(R^{2}\right)} \leq\left\|D_{t}^{i} D^{j} \tilde{u}_{h}\right\|_{L^{2}\left(R^{2}\right)} \leq\left(\frac{\pi}{2}\right)^{i+j}\left\|D^{+i} D_{+}^{j} u_{h}\right\|_{L_{h}^{2}\left(R^{2}\right)}
$$

for any i, j. Here

$$
\left\|u_{h}\right\|_{L_{h}^{2}\left(R^{2}\right)}^{2}=\sum_{j, n} h \Delta t\left|u_{j}^{n}\right|^{2}
$$

By Lemma 1 and Proposition 2 we have following estimate for \widetilde{u}_{h}.
Proposition 3. For any non-negative integer k, there exist following estimate

$$
\left\|D_{t}^{i} D^{3 j} \widetilde{u}_{h}\right\|_{L^{2}\left(R^{2}\right)} \leq \text { const. } P_{k}\left(\|f\|_{h}, \cdots,\left\|D_{+}^{3 k} f\right\|_{h}\right)
$$

for $i+j \leq k$.
From Proposition 3 using Sobolev's lemma we have

$$
\begin{aligned}
\left|D_{t}^{i} D^{3} j \widetilde{u}_{h}\right|_{\mathcal{B}^{1}} & \leq \text { const. }\left\|D_{t}^{i} D^{3} j \widetilde{u}_{h}\right\|_{\mathcal{E}_{L^{2}\left(R^{2}\right)}^{3}} \\
& \leq \text { const. } P_{k+3}\left(\|f\|_{h}, \cdots,\left\|D_{+}^{3(k+3)} f\right\|_{h}\right)
\end{aligned}
$$

for $i+j \leq k$.
By Ascoli-Arzela's theorem we conclude
Theorem 2. For any non-negative integer k, if we take

$$
T_{k}=\frac{1}{2} \min \left(t_{1}, t_{k+3}\right)
$$

Then for $i+j \leq k$ there exists a subsequence $D_{t}^{i} D^{3 j} \tilde{u}_{h^{\prime}}$ of $D_{t}^{i} D^{3} \tilde{u}_{h}$ such that $D_{t}^{i} D^{3 j} \tilde{u}_{h^{\prime}}$ converges to $D_{t}^{i} D^{3 j} u$ as $h^{\prime} \rightarrow 0$ compact uniformly on $R^{1} \times\left[0, T_{k}\right]$. Where u is the true solution of the Cauchy problem for the KdV equation.

Concerning error estimate we have the following result. In this case we regard the approximate solution $u_{h}=u_{j}^{n}$ as a step function which takes the constant value u_{j}^{n} on each interval $\left(\left(j-\frac{1}{2}\right) h,\left(j+\frac{1}{2}\right) h\right)$ $j=0, \pm 1, \pm 2, \ldots$ respectively.

Theorem 3. Let $u(x, t)$ be the true solution of the Cauchy problem for the KdV equations (1) and (2). Let u_{j}^{n} be the solution of the implicit scheme (3) and (4) corresponding the same initial data $f(x)$.
Then we have the following error estimate

$$
\begin{aligned}
\left\|u(x, t)-u_{j}^{n}\right\|_{L^{2}\left(R_{1}\right)} \leq & 0(|t-n \Delta t|) Q\left(\|f\|, \cdots,\left\|D^{3} f\right\|\right) \\
& +0(h) R\left(\|f\|, \cdots,\left\|D^{7} f\right\|\right)
\end{aligned}
$$

for $0 \leq t, n \Delta t \leq t_{1}$. Here Q and R are polynomials with positive coefficients.

References

[1] Kametaka, Y.: Korteweg-deVries equation. I. Global existence of smooth solutions. Proc. Japan. Acad., 45, 552-555 (1969).
[2] Sjöberg, A.: On the Korteweg-deVries equation. Uppsala Univ., Dept. of Computer Sci., Report (1967).
[3] Zabusky, N., and Kruskal, M.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Letters, 15, 240243 (1969).

