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121. A Remark on Singular Integral Operators and
Reflection Principle for Some Mixed Problems

By Sadao MIYATAKE

(Comm. by Kinjir5 KUNUGI, M. J. A., Sept. 12, 1969)

1. Introduction. In this note we consider at first the singular
integral operators whose symbols are not necessarily smooth along
some hypersurfaces in R (Theorem 1). We apply its results to some
hyperbolic mixed problems. And we show how to derive the finiteness
of propagation speed for these problems. As one might observe, our
method of the proof of Theorem I is due essentially to A.P. Carderon-
A. Zygmund, but the obtained results can be applied directly to some
mixed problems.

As for mixed problems, S. Mizohata [4] treated some hyperbolic
equations of higher order, and the author [3] showed an extention to
the case of fourth order, imposing the assumption only on the bound-
ary. At that time this assumptions clarified the type of the equations
suitable to the boundary conditions imposed in [4]. Then K. Asano
and T. Shirota [1] investigated the singular integral operators attached
to the same type boundary conditions in a half space, and treated the
equation (E) below. Now let us remark that Holmgren’s transforma-
tions (5.1)at the boundary of the equation in [3] and [4] yield such a
type of equations as (E), and (E) is the closed form with respect to
(5.1). By virtue of Theorem 1 we can apply the reflection principle to
the equation (E). This principle makes the treatment in [1] fairly
simple. Finally we shall show the finiteness of the propagation speed
of the solution, using Lemmas 2, 3 (Theorem 2). The detailed proof
will be given in a forthcoming paper.

2. Singular integral operator. Hereafter we follow the notation
of [2]. First of all, let us define the following class of functions.

Definition. A function h(x) defined in R is said to be piecewise
in _/ relative to given hypersurfaces S, if h(x) has the properties:
(i) h(x) is continuous in R". (ii) h(x) is in C/(), where w is any
connected component of R--S. (0 a 1)

Theorem 1. Assume that h(x, ) defined in Rn (Rn--{0}) be a C
function of homogeneous degree zero and be piecewise in _1/ relative
to hypersurfaces S with respect to x. Then, for the singular integral
operators H, HI and H2 with such symbols h(x, ), hi(x, ) and h2(x, )
respectively, we have the following facts" HA-AH, H*A--AH*,
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(H*--H)A, A(H*--H), (HoH--HH)A and A(HoH.--HHO are
bounded operators in L.
The proof of this theorem is reduced essentially to the following
lemma.

Lemma 1. Assume that c(x) is piecewise in /" elative to the
hyperplane x-O. Let the symbol [Y]() of a singular integral
operator T be of spherical mean zero and independent of x. Then for
f(x) in -(R) we have

I](c(x)T--Tc(x))f I<=Cl]f I, for i-1, 2, n.

Proof. (2.1) (c(x)-c(y))Y(x-y)f(y)dy
has a pointwise limit almost everywhere as ends to zero (see [2]).
Le us show tha L; norm of (2.1)can be estimated independently of
by cllfl[. By integration by parts (2.1) is equal to

[ (c(x) c(y)) Y(x y)f(y)dS I" c(y)Y(x y)f(y)dy
JIx-yl= JIx-yl

+ (c(x) c(y))Yv(x y)f(y)dy + {" (c(x) c(y))Y(x y)f(y)dy.
d[x-yl>l J

The first and the third terms can be estimated by the method of tIaus-
dorff-Young and the estimate of the second one is well-known. Now
let us decompose f(y) as follows"

f(y)_f(y)+ f.(y), f(y)_ (f), y<O, f(y), yO.
Then the fourth term is equal to

I(x)+I(x)- (c(x)-c(y))Y(x-y)f(y)dy

-F [" (c(x) c(y))Y(x--y)f(y)dy.
Jl)[x-y[

Now assume that x--(x, x_, x), xO. In the integrand of
the first term, c(x)--c(y) is written in the following form"

c(x) c(y) ,(x-- y)c(x) + b(x, y), b(x, y) <- c lx-- y /", y> O.

Remark that IIfll<_llfll, and that the surface integral o zY(z)
equals zero. Then i(x) defined by I(x) in XnO and zero in x0,
can be estimated as in [2]. Concerning L.(x) we decompose

c(x) c(y) c(x) c(x) + c(x) c(y)
n-1

--(c(x)--c(x)) + , (x--Y)C(X)--YnC(X) + b(x, y),

where Yn
Then it suffices to discuss the following terms

f yY(x--y)f(y)dyJ(x)
l>lx-yl>

I" (c(x) c(x))Y(x y)f.(y)dy.J(x)
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Take the absolute value of the integrand of J(x) and we have

I IJl(x) < c yn If2(y) ldy< C Xn -+ ]f2(Y) ldY.

Similarly from ]c(x)-c(x)i cx, the inequality

J2(x) < c Xn f(y) dy< c x g; f(y)]dy
>->.ix-y+ >->.x-yi

follows. Taking account that the surface integral o z on ]z]--1

is zero, we can obtain the desired estimates. For XnO we get the
estimate in the same way.

Remark. I c(x) is not smooth along some hypersuraces S instead
o the hyperplane Xn=O, then we may take the corresponding x’s on S
as the points which give the minimal distances rom x to the piecewise
smooth components of S.
Following the process of [2], we have Theorem 1. q.e.d.. Mixed problem. Consider the ollowing regularly hyperbolic
equation in a half space R={x; x=(x’, Xn)=(X, ", Xn_, Xn),Xn>O}.
Denote x’=(x, Xn_).

() Ot+Nb(z, D) Ot +B z, D --f(z, t),

where b (z, D) is a uniformly elliptic operator. And in each

+,= 0x’ a.(x’,x)vanish on x 0, if k is

odd. Let us take the following simple boundary conditions"

(BI)
0

u =o=0’ k--O, 1,...,m--1,

(BID -0 =,--0’ --0,1,...,m--1.

Theorem Z. Ame that the eoeNeiet o the ieil
o (N) be ieeeiei* feltive to ome herIeeSiR. The
thee ezit iqe oltio o (N) tigig (BI) or (BID o

1)(, t)i (L ) d iitial gata tig (BI) o (BID
tive. The ee ieqait hod i L-ee. Mofeove the otio
h ite eed o oatio t lie i the ee o
oblem.

Remark. I general domi D ith mooth bodaf F i R,
e ea eotfet the oltio o mied foblem o the eqatio
the me etietio o (N), tiig the ooig bod
eogitio

1) c.f. [3] p. 288.
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(BI)’ n(x, D) u -O or (BID’ n(x, D) u --0, k-0,1,2, ..., m--1.
F F

Here n(x, D)- , m(x) (m,..., mn) defined in 9 being trans-
i=1 (X

versal on S. In that proof, the finiteness of the propagation speed
described in Theorem 2 plays the important role. Then we must take
a very nice partition of unity on [2. The solution in has also the
finite speed.

4. Reflection principle. Let us extend the coefficients a,(x’,x)
o (E) by the olowing rule" a,(x’, Xn)-a,,(x’, Xn) i k is even.

a,,(x’, --Xn)-- --a,.(x’, x) if k is odd. Then we can reduce the princi-
of pal parts o (E) to the following evolution equation (E’)

(E’) U-iHAU+BU+F=AU+F, where H is an operator
dt

of type described in Theorem 1. Consider (E’) in the ollowing two
Hilbert spaces

(1 U e L2(Rn), U(x’, Xn)- U(x xn)

,_q(-- U V[ L(R), U(x’,-x)-U(x’, x) We introduce in each

a new norm" IIUll,-IIUIl<> + flll(A + 1)-IU L(Rn), where is a di-
gonalizer of a(H) (c.f. [5]). We take the definition domain of A as

2m

(Rn i-1 2. Using Hille-Yosida’s theorem and the2(A)-( I], ,
energy inequality we can arrive at the existence and the uniqueness
theorem.

5. Finiteness of the propagation speed. Let us define Holm-
gren’s transformation at the boundary point x-(x, X._l, 0) by

(5.1) t’-t+ , (x-x)+x, y-x, ]-1, n.

Then the boundary is also transformed to y--0. We have

Lemrna 2. B (g.1), Oz and re trfomed to the

differential operators of even and odd respectively at the boundary.
Now denote the interior of the backward cone as follows"

C(xo, to) {(x, t) e R (0 )" (to-- t) >_ lx-- x0 I}
Lemma :. Every point of C (a, 2){t0}{xn-0} contained in

the interior of C(a, r2) {t >0} {x-0}, where a-(a, a, ., an_i, an)
a-(a, ., an_l, 0), O an 1, r=(1--a)1/.

2) At first we take a suitable partition of unity on I’:ZVj(s)=l. We extend

(x) to some boundary patches (o, with the help of the theorem on the systems
of ordinary differential equation and the theory of the implicit function. After
that we can make j(x) satisfy n(x, D) j(x)=0 in oj.
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By Lemma 2 and the energy inequality we can see that the solution is
locally unique. Now assume that the initial data is zero in Co(a, o)
{t-0}, where 20--2m" 2-- sup {2(X, $)}, 2 are the charac-

[1=1 lj<2m

teristic roots o (E). Using F. John’s sweeping out method attached to
the parabolic surfaces with tops on (ao, t), O t rto, and by Lemma 2
we can show that the solution is identically zero in Co(ao, rto) {t 0}.
Then considering Lemma 3, we can prove that the solution vanishes
identically in Co(a, to) {t 0}. From the above arguement we can see
that the solution has a finite speed.
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