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144. A Class of Markov Processes with Interactions. I

By Tadashi UENO
University of Tokyo and Stanford University

(Comm. by Zyoiti SUETUNA, M. J. A., Oct. 13, 1969)

Here, we consider a motion of one particle under the interactions
between an infinite number of similar particles. Each particle moves
independently in a Markovian way until an exponential jumping time
comes, and it jumps with a hitting measure which depends on other
particles. A model, where the jumping time also depends on other
particles, is discussed under auxiliary conditions. These results
extend [9].

The models here came into our interest through the works of
McKean [3-5], which started with Kac’s model of Boltzmann equation
[21.

1. Let P(s, 2, t, E) be a transition probability on a locally compact
space R with countable bases and topological Borel field B(R). Assume
P(s,x,t, R)=1 and
(1) P(s, z,t, U)—1, as t—s—0, for open U containing x.
Let q(t, y) be a non-negative, measurable function, bounded on com-
pact (¢, y)-sets. Define

(2)  Pys,a,t, B)=E,, (exp[— [[ate, X, ) de |ys(X. )

where X,(w) is a measurable Markov process with transition probabil-
ity P(s,z,t, E). E,,(-)isthe expectation conditioned that the particle
starts at « at time s. This set up is possible by (1). Let ¢,(t, ),
n=0,1, - - - be non-negative, measurable and q(¢, ) =>_7_, q,(t, v), and
let 7,(y, - - -, Y| t, ¥) be probability measures on (R, B(R)), measurable
in (Y, v Yn, £, y) for fixed E ¢ B(R).?

Consider a forward equation and a version of backward equation :
(3) PY(s,z,t,E)

=P, 2, t, )+ [ def PoG0,z,dn S 0w [ PE)
s n=0 R™ k=1

Xj n'n(yl’ t ',yn'T’ Y, dZ) Po(T, (2 ta E),3>
R

1) Research supported in part by the National Science Foundation, contract
NSF GP 7110, at Stanford University, Stanford, California.

2) For the intuitive meanings of the quantities, the reader can consult [9].

8) The O-th term of the sum is au(r, 9) [, m(r, y, d2) Pu(s, 2, ¢, E).
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(4) P®ENs, x,t, E)
U
—Pys, 2, t, E) +j”drjRPo(s, 2,7, dY) 3] 4,7, )
8 n=0

x| 11 Py, J Ty > Yn| T> ¥, AD)PEIN (2, 2, t, ),
R™ k=1 R

where f is a substochastic measure” on E and
PU®=[ 1@)PGs,,7,E).
R

Theorem 1. i) Forward equation (8) has the minimal sub-
stochastic solution PV (s, xz,t, E). ii) PY(s, z, t, E) satisfies a version
of Chapman-Kolmogorov equation :

(5) PY(s,x,u E)= j P(s, z, t, A PCE, y,u, B),  s<t<u.
R

iii) PY(s, z, t, E) satisfies (4), and s also the minimal among sub-
stochastic solutions of (4). iv) If the minimal solution is a probability

measure, it is the unique solution of (8) and (4). This occurs when
the following a) or b) holds and f(R)=1.

a) There are q,(t)’s such that q,(t, ¥) < q.(t) and > 2 , nq,(t) is locally
Le, a>1.

b) There are constants q,’s such that q, (&, )< qu Dm0 €< 0, and
(6) jl <Zw} qn(z-—r"“)) _ldz'= oo, for 0<e<1.
Proofs olf_si),n =1;) and a part of iii) are parallel to [9], using
J‘:dijPo(s, 2,7, dy)a(z, )=1—Py(s, z, t, ) <1—Pys, a, t, E).

iv) To prove P“(s, «, t, R)=1 when a) holds, let S’ be the m-th appro-
ximation to the minimal solution P, that is, S{(s, z, t, E)
=Ps,x,t, F) and

Sia(s, 2, t, E)

=P(s, 2, t, E)+J‘tdrj S (s, x, T, dy) f] a.(t, ¥)
8 R n=0

x| 8067, au| 7,417, 0, 9P, 2, 1, B),

R™ =1
S¥(s, 7, E) = j F@dx)SP (s, %, 7, B).
R

Then, integrate q(t,¥) on R by both sides of this to get
I—S;r{ll(s’ Z, t, R)

=[az| (5.6, ,7,d2) 565, 2, 7, d)ate, v)

+[ @ s6s,0,7,a0 3 0, A8, 7, By,
8 n=1
Since q(t)=> 5., ¢.(t) is locally L* by a), the first term is bounded by

4) A measure is called stochastic (substochastic), if it has total mass 1 (not
more than 1).
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j’(s;ial(s, 2,7, R)—S¥(s, ¢, 7, R)q(x)de

t (a=1)/a t 1/ a
< ([ s—s2rs, 2,7, Ryren) T ([[a(@raz) o
This implies

(7) 1—P<f>(s,x,t,R)=j‘dz PO, x, 7, dy) 3. palT, (L —POR)Y).
s R n=1

Hence, it is enough to prove P{?(R)=1. Integrating (7) by f and
putting g(z)=PR(R),

l—g(t):j:drIRPéj?(dy) 3 4w, A -9

<[t 3 a.@0@ - 9@ <[ de1— g (3 na,)

Then, it is easy to prove 1—g()=0, since 7 , nq,(7) is locally L=,

a>1. When q,(z,y)’s are constants, (7), integrated by f on R,
reduces to

(8) 1-g()= dr 3 a.-(g—g®™),  t=s.

But, this has 1 as a unique solution if and only if (6) is true. Hence,
in case b) holds, we modify (3) to an equation with constant ¢,’s and
7#,’s modified as in 3 later. Then, the minimal solution of this equation
has total mass 1 and it is the minimal solution of (8). The proof of
the rest of iii) is omitted here.

2. Given a forward equation of integro-differential type:
—a—f P (s, x, t, dy)so(y)=j P (s, z, t, dy) B o(y),®
( 9 ) at b4 R
[ PoG ot dpowi—e@,  astis,
R

(10) BPow)=A,0)+ goqn(t, )

(] 11, P mws - vl v, dDp@— o))

where A, is the generator” of P(s, x,t, E) in1. Then, solutions of (3)
solve this as in

Theorem 2. Assume ¢) q,(&, ), qt,y) and 7,y -+, Y|t ¥, E)
are continuous in t when other variables are fixed. q(t, y) is bounded. d)
P(s, x, t, E) is continuous in t(>s) for fixed s, z, Ec B(R). For a
bounded continuous function ¢, there is a bounded function A,p(x),
continuous in x and in t, such that

5) This condition was adopted by H. Tanaka [6] and S. Tanaka [7] for a
temporally homogeneous model. The relation between (6) and (8) owes to Dynkin.
The reader can consult Harris [1] p. 106 for the proof.

6) H. Tanaka wrote to the author that he considered a similar equation
related with [6].

7) Here, the term generator is used loosely, instead of the expression in
Theorem 2.



644 T. UENO [Vol. 45,

11 »aa-[jRP(s, 2t )= Pls,a,t, d)Ap).

Then, any substochastic solution of (3) satisfies (9) for this ¢.

Examples. 1) Let A, be an elliptic operator with smooth, bounded
coefficients :

A,o(x)= 3 a;(x
=B e

rx=(x, -+, x,) e E"

Then, A, uniquely determines P(s, x,t, E) which satisfies d) for each

sufficiently smooth bounded ¢ with bounded derivatives up to the
second order.

2) Let P(s, z, t, E) be temporally homogeneous,

Tup@) = P(s, 2,5+, dp)

map B(R) into C(R), and the semigroup {T,} acting on C(R) be
strongly continuous in £. Then d) holds for the Hille-Yosida generator
A,=A of {T,} and each ¢ in D(A4).”

3) When P(s, z, t, E)=0,(E), d) holds for each ¢ ¢ B(R). This is
the model in [9], except that ¢ is bounded.

3. With the same initial condition of (7), consider

(9) %JRP“ (s, x, ¢, dy)so(y)=jRP(f (s, z, t, dYCP o(y),”

2

& )
@) + ;lbi(x)a—xigo(x),

10) e =Aew+ 3| T PR@I6W, - Vu 1)
X jR(nn(yl, Ul Y, d2)—8,(d)p(2)

where q,(¥, -+, Y, t,¥)’s are non-negative and measurable. This
corresponds to a model where the jumping time also depends on other
particles. Here, (3) and (4) are replaced by

@) P2t B)=PY s,z t, B+ [de S [ " POGs 27, dy)
% [1 PLAYIGWs -, Y T, )
X .[Rﬂ"(y” YTy, dR)PO(T, 2, t, K)
@)  Pe(s, x, t, B)=PFLs, . t, E)+£df S P, w7, dy)
X ,ﬁl PAY D)WYy -3 Yus T, Y)
XIRTF”(?/I, Yl T, Y, dz)P(Péfs))(‘r, 2, t, K)

8) B(R) and C(R) are the set of all real-valued functions on R, measurable
and continuous, respectively. D(4) is the domain of A.

9) Boltzmann equation with bounded cross section can be rewritten in this
form.
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where

PY(s, 2,7, B)=E,, (exp[—j’qw(s, 7, X,,)da] xE(Xt)) ,

076 =2, T PRAYIGWs - Yt 9)-

Theorem 3. Assume that there are measurable functions q,(t, y)

such that
Qn(yu oy Yny t: y)gqn(t, ?/)

and that q(t, ¥)=> 3, 0.(t, y) is bounded on compact (t, y)-sets. 1) If
q.(t, ¥)’s satisfy a) or b) in Theorem 1, then (3’) has one and only one
stochastic solution for each probability measure f. This solution
solves (4) and satisfies the Chapman-Kolmogorov equation (5). ii)
Assume, moreover, the conditions for q,(t, ), qt, ), w, and ¢ in
Theorem 2. Then, this solution satisfies (9) for this ¢.

It can be proved that the minimal solution of (8), with above
q,(t,v) and =, replaced by

ﬁ'n(yl: ° ‘,ynlt, Y, E)
(11) =¢I(t, y)—l{Qn(yb s Yns t’ y)n'n(yly o Yn I t’ Y, E)
+ (qn(t, ’Z/)— qn(yly sy Yn t’ y))ay(E)},

is the unique stochastic solution of (3’) and solves (4’). By the condi-
tions in ii), this solves (9) with =, replaced by 7%, of (11), which
coincides with (9') by P(R)=1."0

4, Another extension of 1 is as follows. Let Py(s,2,t, E) be a
transition probability, majorized by P(s,z,t, E) satisfying (1) and
P(s,z,t, R)=1, such that

0< Py(s, z, t, R)<1, for s<t.

Let Kys,z,4) be a probability measure on Ix R concentrated on
((s, 0)NI)X R, where I is the interval of time parameters. Let
K (s, z, 4) be measurable in (s, ) and satisfy

12) Kys,z, ANUT,xR)) =jRP0(s, z, t, dNK(t, y, A), I,=[t, 00)NI.
Then, the alternative for the forward equation (8) is a pair of equations:
(13)  PW(s, @, t, E)=Pys, z,t, E)+ j K(s, z, de, dy)

[s,tIX R

X 3 palr, y)j 1T P& (dyy)
n=0 R™ k=1

XjRnn(yl’ s Yn l Y, dz)Po(T’ ?, t, E),

10) When Pg’f,) (R)+1, this method does not work. The author wrote in I of [9]
that an equation of type (3) seemed more natural than (3’). This should be corrected
as follows: Both equations of type (3) and (3') have nice probabilistic meanings,
and a nicer method should be found for (3) when there are no ¢,(f,y) as in
Theorem 2, or the solution of type (3) fails to be a probability measure.
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(14) K9, z, H)=K(s,xz, ) +I Ky (s, x, dr, dz) i} 0.7, %)
IsxR n=0

X ﬁP;p(dyk)j Tal - 2 Ya| T Uy ADE (T, 2, ),
R™ f=1 R

where p,(t, ¥)’s are non-negative and > 5_, .(t,¥y)=1. The alternative
for (4) is

15 Prds, a,t,B)
=P ot B+ | Keedn,d) e [ ] PR

XJ nn(@/l, M) yn I T, y’ dz)P(Ps(ofs))(T, y’ t’ E)-

R

This amounts to let the particles jump according to a multiplicative
functional, not necessarily of type exp (—‘rq(a, X,,)do') . Incase of 1,

(7, Y) = qa(7, W/q(T, y).

Theorem 4. 1i) There is a pair of substochastic measures P (s,
z,t, E) and a o-finite measure K(s, x, A) on I X R concentrated on
(s, )N X R, which solves (13)-(14) and is the minimal among all
such pairs. ii) PY(s,x,t,E) satisfies the Chapman-Kolmogorov
equation (5) and
(16) KY(s, 2, AN, X R))= j PGt dyK eI, y, 4).

iii) P (s, 2, t, E) is also the minimal substochastic solution of (15).

iv) If P (s, z, t, R)=1, then the minimal pair gives the unique solution
of (13)-(14) and (15). This holds, if

j[ . K0(s,0,dr, dy) X np,(r, ) <oo, £, and fR)=1.
§,t1X n=1

[s,tIxR
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