35. Notes on Semilattices of Groups

By Sándor Lajos
K. Marx University of Economics, Budapest, Hungary
(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1970)

Recently a lot of ideal theoretical characterizations for semigroups which are semilattices of groups were given by the author (see [2], [3]). Continuing these investigations several further criteria will be established here. For the terminology we refer to A. H. Clifford and G. B. Preston's books [1] and for the definition of (m, n)-ideals see the author's paper [5].

Theorem 1. An arbitrary semigroup S is a semilattice of groups if and only if the relation

$$
\begin{equation*}
L \cap B=L B \tag{1}
\end{equation*}
$$

holds for any bi-ideal B and for any left ideal L of S.
Proof. Necessity. Let S be a semigroup which is a semilattice of groups. Then it is regular and every one-sided ideal of S is twosided (see Exercise 4.2.2 in [1], I). In this case every bi-ideal B of S is also a two-sided ideal of S by a recent result of the author [4]. Therefore (1) follows from the well known regularity criterion:
(2)

$$
L \cap R=R L
$$

for any left ideal L and for any right ideal R of S.
Sufficiency. Let S be a semigroup with property (1) for any left ideal L and for any bi-ideal B of S. Then (1) implies
(3)

$$
S \cap R=S R
$$

for any right ideal R of S, and

$$
\begin{equation*}
L \cap S=L S \tag{4}
\end{equation*}
$$

for any left ideal L of S, that is, every one-sided ideal of S is twosided. Thus we obtain that $A \cap B=A B$ for any two two-sided ideals A, B of S, i.e. S is regular. Next we show that S is a centric semigroup. Indeed, for any element a of S the equality (1) implies

$$
\begin{equation*}
a S=S \cap a S=S a S, \tag{5}
\end{equation*}
$$

and
(6)

$$
S a=S a \cap S=S a S
$$

(5) and (6) imply that $a S=S a$ for any element a in S. It is known ${ }^{11}$ that the idempotent elements of a centric semigroup lie in the center, thus $e f=f e$ for any two idempotent elements of S. Therefore S is an inverse semigroup every one-sided ideal of which is two-sided. This means that S is a semigroup which is a semilattice of groups.

1) See Clifford and Preston [1], II.

The following criteria can be proved analogously.
Theorem 2. A semigroup S is a semilattice of groups if and only if any one of the following conditions holds:
(i) $L \cap Q=L Q$ for any left ideal L and for any quasi-ideal Q of S.
(ii) $Q \cap R=Q R$ for any right ideal R and for any quasi-ideal Q of S.
(iii) $B \cap R=B R$ for any bi-ideal B and for any right ideal R of S. More generally we have the result as follows.
Theorem 3. For a semigroup S the conditions (A)-(C) are equivalent:
(A) S is a semilattice of groups.
(B) $A \cap B=A B$ for every (m, m)-ideal A and for every ($n, 0$)-ideal B of S.
(C) $A \cap B=A B$ for any $(0, n)$-ideal A and for any (m, m)-ideal B of S (m and n being arbitrary fixed positive integers).

References

[1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. III. Amer. Math. Soc., Providence, R. I. (1961; 1967).
[2] S. Lajos: Note on semigroups, which are semilattices of groups. Proc. Japan Acad., 44, 805-806 (1968).
[3] -: On semilattices of groups. Proc. Japan Acad., 45, 383-384 (1969).
[4] -: On the bi-ideals in semigroups. Proc. Japan Acad., 45, 710-712 (1969).
[5] -_: Generalized ideals in semigroups. Acta Sci. Math., 22, 217-222 (1961).

