30. On Vector Measures. II

By Sachio OHBA

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

In [4] we have proved the following theorem. Let S be a set, R a semi-tribe (δ -ring) of subsets of S, X a normed space and m; $R \rightarrow X$ a vector measure. Then there exists a finite non-negative measure ν on R such that

(1) for any $A \in \mathbb{R}$ and any number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon, A) > 0$ such that $B \in \mathbb{R}$, $B \subset A$ and $\nu(B) < \delta \Rightarrow ||m(B)|| < \varepsilon$

(2) $\nu(E) \leq \sup \{ ||m(A)||; A \subset E, A \in R \} \text{ for } E \in R ([4] \text{ Theorem 1}).$

The purpose of this paper is to point out some properties of regular vector measures by using this theorem. These properties were proved earlier (Dinculeanu [1] § 16, Theorem 3, Corollaries 1–4) for vector measures with finite variation, but we shall drop this condition and we shall consider the necessary and sufficient condition for the extension of a regular, finitely additive set function from some clan to a wider class of subsets (cf. Theorem 3). And Corollary 1 is the extension of Dinculeanu's and Kluvanek's result ([2] Theorem 5).

3. Regular vector measures. Suppose that S be a locally compact, Hausdorff space and X a Banach space.

Definition 3. Let R be a clan (ring) of subsets of S. A set function m; $R \to X$ is called regular if for every $A \in R$ and every number $\varepsilon > 0$ there exists a compact set $K \subset A$ and an open set $G \supset A$ such that for every $A' \in R$ with $K \subset A' \subset G$ we have $||m(A) - m(A')|| < \varepsilon$.

Definition 4. Let m; $R \rightarrow X$ be a set function and μ a non-negative measure on R. m is μ -absolutely continuous if for every $A \in R$ and every number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon, A) > 0$ such that for every $B \in R$ with $B \subset A$ and $\mu(B) < \delta$ we have $||m(B)|| < \varepsilon$.

Lemma 2. Let R be semi-tribe of subsets of S which has the following conditions

for every compact set K and for every open set G such that $K \subseteq G$, there exists a $A \in R$ such that $K \subseteq A \subseteq G$.

- (*) If m; $R \rightarrow X$ is a regular vector measure, then there exists a finite non-negative measure ν on R such that
- (1) m is ν -absolutely continuous.
- (2) $\nu(E) \leq \sup \{ || m(A) ||; A \subset E, A \in R \} \text{ for } E \in R.$
- (3) ν is regular.

Proof. It is easy by [4] Theorem 1.

Theorem 3. Let R be a clan which has the following conditions

(*) for every compact set K and for every open set G such that $G \supset K$ there exists a $A \in R$ such that $K \subset A \subset G$.

(**) for every $A \in \mathbf{R}$ there exists a $A' \in R$ such that $A \subset \text{Int}A'$.

Then every regular and finitely additive set function m; $R \rightarrow X$ can be extended uniquely to a regular vector measure m_1 , on the semi-tribe φ generated by R if and only if there exists a finite, non-negative, regular measure ν on R such that m is ν -absolutely continuous. In this case, m becomes countably additive.

Proof. The necessity is immediate by Lemma 2.

Sufficiency. By Dinculeanu ([1] § 16, Theorem 2, Corollary 2) ν can be extended uniquely to a finite, non-negative regular measure ν_1 on φ . For any $A \in \varphi$ there exists a $E \in R$ with $E \supset A$ (Dinculeana [1] § 1, Proposition 10, corollary). By ν -absolute continuity of m, for every $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon \cdot A) > 0$ such that $B \in R$, $B \subset E$ and $\nu_1(B) = \nu(B) < \delta \Rightarrow ||m(B)|| < \varepsilon$. Hence $B, C \in R, B \subset E, C \subset E$ and $\nu_1(B \Delta C) = \nu(B \Delta C) < \delta \Rightarrow$

 $||m(B) - m(C)|| = ||m(B - C) - m(C - B)|| \le ||m(B - C)|| + ||m(C - B)|| < 2\varepsilon$

Since ν_1 is regular, for above A and δ there exists a compact set $K \subset A$ and an open set $G \supset A$ such that $B \in R$ and $B \subset G - K$ implies $\nu_1(B) < \delta$.

By (*) there exists a $B \in R$ with $K \subset B \subset G$. Therefore $B \cap E \in R$ and $A \varDelta (B \cap E) \subset G - K$ implies $\nu_1(A \varDelta (B \cap E)) < \delta$. Now we take $B_1 \in R$ and $B_2 \in R$ such that $\nu_1(A \varDelta (B_1 \cap E)) < \frac{1}{2} \delta_0$ and

$$u_1(A arDelta(B_2 \cap E)) \! < \! rac{1}{2} \delta_0 \quad ext{for}$$

Then

 $\nu((B_1 \cap E) \varDelta(B_2 \cap E)) = \nu_1((B_1 \cap E) \varDelta(B_2 \cap E))$ $\leq \nu_1(A \varDelta(B_1 \cap E)) + \nu_1(A \varDelta(B_2 \cap E)) < \delta_0 \leq \delta.$

any $\delta_0(0 < \delta_0 \leq \delta)$.

Hence we have $||m(B_1 \cap E) - m(B_2 \cap E)|| < 2\varepsilon$. Since X is complete space, we have $m_E(A) = \lim_{\nu_1(A \neq (B \cap E)) \to 0} m(B \cap E)$. In particular, $m_E(A) = m(A)$ for $A \in R$. The uniqueness of m_E is clear.

Next we shall prove that m_E is independent on $E(\supset A)$. For any $F \in R$ with $A \subset F \subset E$ and every number $\varepsilon > 0$, there exists $\delta_1 = \delta(\varepsilon, E)$ and $\delta_2 = \delta(\varepsilon, F) > 0$. We set $\delta = \min(\delta_1, \delta_2)$. We take $B_1, B_2 \in R$ such that $\nu_1(A \varDelta(B_1 \cap E)) < \frac{1}{2}\delta$ and $\nu_1(A \varDelta(B_2 \cap E)) < \frac{1}{2}\delta$. Then $\nu_1((B_1 \cap E) \varDelta(B_2 \cap F)) < \delta \le \delta_1$ and $B_2 \cap F \subset E$.

It follows that $||m(B_1 \cap E) - m(B_2 \cap F)|| < 2\varepsilon$. Therefore $||m_E(A) - m_F(A)|| \le 2\varepsilon$. Since ε is arbitrary, we have $m_E(A) = m_F(A)$. For every $F \in R$ with $F \supset A$, $m_F(A) = m_{E \cap F}(A) = m_E(A)$.

If we put $m_1(A) = m_E(A)$ $(A \subset E \in R)$, we have

(i) m_1 is finitely additive.

No. 2]

- (ii) m_1 is ν_1 -absolutely continuous.
- (iii) m_1 is regular.
- (iv) m_1 is countably additive.

Since (i) is clear (see Kluvanek [3] Theorem 1), (iii) is clear by (**) and (ii), and (iv) is clear by (ii), it only remains to prove (ii): For any $E \in \varphi$ there exists a $F \in R$ with $F \supset E$. From ν -absolute continuity of m for every number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon, F) > 0$ such that $A \subset F A \in R$ and $\nu(A) < \delta$ implies $||m(A)|| < \frac{1}{2}\varepsilon$. Let $B \in \varphi$ be a set such that $B \subset E$ and $\nu_1(B) < \delta$. We put $\delta_1 = \nu_1(B)$. Then from the definition of $m_1(B)$, there exists a number $\delta_2 = \delta(\varepsilon, E) > 0$ such that $\nu_1(B \varDelta(B_1 \cap F))$ $< \delta_2$ implies $||m_1(B) - m(B_1 \cap F)|| < \frac{1}{2}\varepsilon$. We put $\delta_0 = \min(\delta - \delta_1, \delta_2)$. Let $B_1 \in R$ be a set with $\nu_1(B \varDelta(B_1 \cap F)) < \delta_0$. Then $||m_1(B) - m(B_1 \cap F)|| < \frac{1}{2}\varepsilon$. $|\nu_1(B) - \nu(B_1 \cap F)|| = |\nu_1(B - B_1 \cap F) - \nu_1(B_1 \cap F - B)|$ $< \nu_1(B \varDelta(B_1 \cap F)) < \delta_0 < \delta_1$.

so
$$\nu(B_1 \cap F) < \nu_1(B) + \delta - \delta_1 = \delta$$
. Therefore $||m(B_1 \cap F)|| < \frac{1}{2}\varepsilon$. Thus we have $||m_1(B)|| \le ||m_1(B) - m(B_1 \cap F)|| + ||m(B_1 \cap F)|| < \varepsilon$. The uniqueness of m_1 is clear by the uniqueness of $m_{\mathbb{F}}$. Q.E.D.

Denote by \mathfrak{B}_0 the semi-tribe of the relatively compact Baire sets, by \mathfrak{B} the semi-tribe of the relatively compact Borel sets and by \mathfrak{R}_0 the clan generated by the compact sets with are G_{δ} .

Corollary 1. Let R be a clan such that $\Re_0 \subset R \subset \mathfrak{B}$. every regular and finitely additive set function $m: R \to X$ can be extended uniquely to a regular Borel measure $m; \mathfrak{B} \to X$ if and only if there exists a finite, non-negative, regular measure ν on **R** such that m is ν -absolutely continuous. In this case m becomes countably additive.

Proof. By Dinculeanu ([1] §14, Propositions 11 and §15, Lemma 1) R is satisfied the conditions (*), (**) of Theorem 3. Then we can prove in the same way as the proof of Theorem 3.

If we put $R = \mathfrak{B}_0$ Then we have the following result.

Corollary 2. Every Baire measure m; $\mathfrak{B}_0 \to X$ can be extended uniquely to a regular Borel measure m_1 ; $\mathfrak{B} \to X$ (Dinculcanu and Kluvanek [2] Theorem 5).

References

[1] N. Dinculeanu: Vector Measures. Pergamon Press, Berlin (1967).

132

No. 2]

- [2] N. Dinculeanu and I. Kluvanek: On vector measures. Proc. London Math. Soc., 17, 505-512 (1967).
- [3] I. Kluvanek: On vector measures (in Russian). Mat. Fys. Časopis., 8, 186-192 (1957).
- [4] S. Ohba: On vector measures. I. Proc. Japan Acad., 46, 51-53 (1970).