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1. Introduction. Let (/2, /,/t) be a probability measure space,
and let (Y2,-) denote a measurable space where 2 is a real separable
Hilbert space with inner product (., ., and . is the a-algebra of
Borel subsets of Y). Let x(oo) denote a -valued random variable,
that is (oo" x(oo) e B} e for all B e .; and let denote the probability
measure (or distribution) on Y) induced by/t and x, that is --/tox-,
or (B)-f(x-(B)) for all B e_. Let (Y$) denote the space of all
probability measures on ; and let e () be such that s{llxll}

-[llxlld oo. Then the covariance operator S of is defined by the

equation

(Sg, g} =.[(f,_ g}d(f) ( 1 )

(cf. Grenander [1], Parthasarathy [4], Prokhorov [5]). A linear
operator L in is said to be an S-operator if it is a positive, self-
adjoint operator with finite-trace; hence L is compact. S-operators
play a fundamental role in the study of probability theory in Hilbert
spaces (c2. [2, 3, 6, 10]). We recall that the function

(g)-- exp(-- 1/2< Zg, g}}, g e , ( 2 )
is the characteristic functional (or Fourier transform) of a probability
measure on iff S is an S-operator. Also, if is the measure cor-
responding to , then s(llxll} c and S is the covariance operator of. We also recall that a measure on is normal (or Gaussian) iff
is of the form

(g)=exp (i(go, g)--1/2(Sg, g)}, ( 3 )
where go is a fixed element in and S is an S-operator. The element
go is the expectation of , and S its covariance operator.

Let L.(9, ,/, )-L.(t2, )) denote the space of -valued random
variables x(w) such that e{llxll} c, with norm defined by

[x] (,,{ x ll2})1/. ( 4 )
For any finite sequences {}L(9, ,/t)-L(9) and {f}, put, (w)Q)f= , (w)f(mod/). ( 5 )

i=l i=l
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The above relation defines an element of L(9,). Let L(9)
denote the algebraic tensor product of the Hilbert spaces L.((2) and
that is L((2)Q)) is the set of all functions defined by (5); and it is also
a dense linear subspace of L(9, ) with norm [. ]. This norm is a
crossnorm (cf. Schattan [7], p. 28), that is, [f]-. f, e L(),
f e . Let L(9) denote the tensor product Hilbert space which is
the completion of L(9) with respect to the norm defined by (4);
that is L(9,)--L(9). Since v-Zox-, it is clear that those
elements x e L(9)@ generate measures e () for which covari-
ance operators are defined. In the present note we use two theorems
of Umegaki and Bharucha-Reid ([9], Sections 4 and 5) on a class of
operators associated with elements of a tensor product Hilbert space
to obtain representations of covariance operators.

2. Representations of covariance operators. Let H and be
two real separable Hilbert spaces with inner products (.,.) and (.,.),
respectively; and let H denote the algebraic tensor product of H

and . For any two elements x-- $,@f, and y- g, where

$,, V e H and f, g, e , put

i=

Then, (. I’) is an inner product in H; and
/

satisfies the norm condition on HO. Let H denote the comple-
tion ofH with respect to the norm defined by (7); then H@ is the
tensor product Hilbert space of H and . For x, y eH (where x
and y are as defined as above) and , e , put

r,v(#,, #)- ($, )<f, #><#,, g>. ( 8 )
i,J=l

Then F,v is a bounded bilinear functional on ; and ther.e exists a
unique bounded operator, say Sz, v, in such that <S,v#,
=F,(#I, .).. The operator S, has been defined or every pair x, y
e H; but S.v is defined also or any pair x, y eH; since for x, y
e@ there exists sequences {xn},{Yn}H such that ]x,--x]O,
][y,-y]O, and S,,, converges in trace norm to a trace class operator
S. which is independent of the choice of the sequences {x} and {y,}.

We now state the following result"
Theorem A (Theorem 4.1 of [9]). For every pair x, y e H@,

there exists a unique trace class operator S,v which is conjugate
bilinear in x, y satisfying (i) S=S >0, (ii) S* S (iii) Tr[S,v]
=(x]y), (iv) Uniform norm ]]S,]]Tace norm [S,]]]x]]. I]yll, and
(v) S, is completely positive; that is, for any finite sequences
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In this note we are concerned only with the case S=S, hence
in this cse S is positive, sel-adjoint operator with finite trace,
and S is an S-operator.

Let be a real separable Hilbert space, and let H=Lz(O, , ).
In this case Lz(O,)=Lz(O). We now prove the ollowing re-
presentation theorem.

Theorem. For every x L(, ) there is probability measure r
on such that the S-operator S is the covariance operator o/ that
is S admits the representation

Sg, g=_f gdx(f). ( 9 )

ProoL Let x e L(9), i.e. x= h, where e L(9) is a
t=1

real-valued random variable, and h e . Now

(Sg, g}= Z (, )(h, g} (g, h}

N <h, g) (g, h)()()d()
D i,J=l

>
9 i,J=l

=I.(w)h, g)d(w)

Hence

(Sg, g)-- | (10)
J

From the definition of the probability measure v, for every
measurable function on ,

du=S,(ox)d[. (11)

we can take as the continuous function on given by (f)=(f, g,
for fixed g. Hence

y#(f g>’dp(f) ya(x(w), g>’dfl(w). (12)

Using (12) in (10) we obtain (9) for any x e L(9).
Now let x e L(9, ). Then there exists a sequence Xn e

such that [x--x]0, where [. ] is the crossnorm defined by (4). This
implies that SS in trace norm, and (Sg, g(Sg, g. We also

have f (x(w),gdi (x(w), gdfl. Hence from (10)and (12)we
J

obtain (9) for any x e L(9, ).
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We now consider another approach to the representation of S-
operators. Let x and y be two given elements of . The tensor
product x(R)y represents an operator on whose defining equation is
given by (x(R)y)z=(z, y}x for every z e (cf. Schattan [7], p. 69; [8],
p. 7). The following result is utilized:

Theorem B (Theorem 5.1 of [9]). For any pairs x, y e L.(t,)
and f, g e

(Sx,vf g Tr[x(w)(R)y(w) f(R)g]dl(w), (13)
d

and the integrand in (13) is measurable.
As before, we restrict our attention to the case S=S, and take

tO to be a real separable Hilbert space. Using the fact that (f(R)fi)
(gl (R) g) (g,, f2f (R) g2, we have Tr[x(w)

Hence (13) becomes (Sg, g=[(x(w),_ gdl(w), which is (10). Utiliz-

ing (11) and (12), we obtain (9) for all x e L(2, ).
:}. lxamples and applications. In this section we mention a

few applications of the above representations and compute the co-
variance operators associated with certain random functions.

a. An obvious application is to the characteristic functionals of
probability measures in (); for example, it follows from (2) that
9(g), the characteristic functional of a probability measure e (.))
induced by x(w), is of the form

9x(g)= exp -- ($i, .)(ht, g) (g, hj? g e (14)

where x(w)= , $(w)h, with $(w) e L.(t9), h e
i=l

bo In the study of random equations in Hilbert spaces we fre-
quently encounter transformations of the form y(w)=L[x(w)], where
x(w) is a Gaussian random variable and L is an endomorphism of
If m and S denote the expectation of x and the covariance operator
of the measure induced by respectively; then it is well-known (cf.
[1], pp. 141-142) that mv=Lm and S=LSL*. Hence, given the
representation of S, an explicit representation of Sv can be obtained.

c. Let =L.(T, O, r) where T-[0, 1], 0 is the a-algebra of Borel
subsets of T, and v is Lebesque measure on . Let L.(9, )denote
the space of all -valued measurable random functions x- {x(t, w),t e T}

such that [ IIx IId/ c. In this case the tensor product Hilbert space
J

is L(t, )=L(t)(T)=L([2 T). Since x is a second-order random
function its covariance kernel is of the form

Rx(s, t)=
Jfx(s, w)x(t, w)df(w). (15)
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An easy consequence of the representation (13) is that the covari-
ance operator Sx on L2(T) is of the form

(Sxf)(s)-f R(s, t)f(t)dr(t), f e L2(T). (16)
JT

Also, we have Tr[S] ([x]) (llxll)d/(w)-frR(s’s)dv(s)-Tr[R]"
We now assume that x is continuous in quadratic mean. In this

case the covariance kernel R(s, t) is of the form

Rx(s, t)= , (s)i(t) (17)
t,=1

where the 2 are the eigenvalues and the f are the eigenunctions of
R(s, t). Inserting (17) and (16) we have

i=1 2i T t=1

where a=2;((f,f}. This also follows from the representation of

operator S namely S=
i=l

d. Let =l and let x e L(9)(R)l. In this case x is an/-valued
random variable; and can be considered as a sequence {x(w)} of real-

valued random variables such that [x[<c. Define R)-e{xx}.
Then, for g= {g} e l,

S,)- <(o)),

i,J=l
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