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Center for Research in Probability
Wayne State University, Detroit, Michigan

(Comm. by Kinjird KUNUGI, M. J. A., Feb. 12, 1970)

1. Introduction. Let (2,4, 1) be a probability measure space,
and let (9, B) denote a measurable space where © is a real separable
Hilbert space with inner product (., ->, and 4 is the ¢-algebra of
Borel subsets of §. Let x(w) denote a $-valued random variable,
that is {w: #(w) € B} ¢ A for all B ¢ B; and let v, denote the probability
measure (or distribution) on § induced by ¢ and @, that is v,= pox™,
or v, (B)=pu(x"'(B)) for all Be $. Let M(H) denote the space of all
probability measures on $; and let v e M(PH) be such that ef||z|f}

=I||x|lzdv< oo. Then the covariance operator S of v is defined by the

equation

{Sy, g>=j©<f, 9ytdy(f) (1)

(cf. Grenander [1], Parthasarathy [4], Prokhorov [5]). A linear
operator L in © is said to be an S-operator if it is a positive, self-
adjoint operator with finite-trace; hence L is compact. S-operators
play a fundamental role in the study of probability theory in Hilbert
spaces (cf. [2, 3,6,10]). We recall that the function

P(9)=exp{—1/2<Sg, 9>}, 9€ 9, (2)
is the characteristic functional (or Fourier transform) of a probability
meagure on § iff S is an S-operator. Also, if v is the measure cor-
responding to D, then ¢,{||z|*} <o ; and S is the covariance operator of
v. We also recall that a measure v on § is normal (or Gaussion) iff ¥
is of the form

(9) =exp {iKgy, 9>—1/2{89, 9>}, (3)
where g, is a fixed element in § and S is an S-operator. The element
g, is the expectation of v, and S its covariance operator.

Let L,(2, J, p, 9)=L,(2, $) denote the space of H-valued random

variables x(w) such that ¢,{||z|} <co, with norm defined by

[xl,= (e, {llz D (4)
For any finite sequences {§;}C L,(2, A, p)=L,(2) and {f;}C 9, put
3 4@O = 3 € @) fi(mod p). (5)
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The above relation defines an element of L,(2,9). Let L(2O9
denote the algebraic tensor product of the Hilbert spaces L,(2) and $;
that is L,(2)©O9 is the set of all functions defined by (5); and it is also
a dense linear subspace of L,(Q2,$) with norm [.],, This norm is a
crossnorm (cf. Schattan [7], p. 28), that is, [EOf1,= & .- | fIl, § € L),
fe9. Let LZ(Q)@)@ denote the tensor product Hilbert space which is
the completion of L,(2)®$ with respect to the norm defined by (4);
that is L2, 9)=L,(2)RX¢. Since v,= pox~l, it is clear that those
elements x ¢ LZ(Q)C@@ generate measures v, ¢ M(H) for which covari-
ance operators are defined. In the present note we use two theorems
of Umegaki and Bharucha-Reid ([9], Sections 4 and 5) on a class of
operators associated with elements of a tensor product Hilbert space
to obtain representations of covariance operators.

2. Representations of covariance operators. Let H and £ be
two real separable Hilbert spaces with inner produets (-, -) and <., ->,
respectively ; and let H®$ denote the algebraic tensor product of H

and . For any two elements z= Zn; £,0f; and y= Zm] 7;0g,, where
i=1 Jj=1
§i,m;eH and f;, 9, € §, put

@lyy=31 3 Eon )09 (6)
Then, {-|-> is an inner product in HO$; and
=3 6ORI 26O (7)

satisfies the norm condition on HO$H. Let H@@ denote the comple-
tion of HO$ with respect to the norm defined by (7) ; then H® is the
tensor product Hilbert space of H and . For z,ye HOH (where x
and y are as defined as above) and ., 4, € §, put

Fw,y(‘!"ly ‘l"z):::Z?::l(Ei’ 7]j)<fz’ ",’2><\]/'1’ gj>’ ( 8 )

Then F, , is a bounded bilinear functional on §; and there exists a
unique bounded operator, say S,,, in § such that (S, ¥, ¥,
=F, ,(y;,v,). The operator S, , has been defined for every pair z,y
e HO9; but S, , is defined also for any pair z,y € H®§g; since for z, ¥y
e ®$ there exists sequences {z.}, (¥} HO$ such that |z,—x|—0,
|¥»—v|—0, and S,, ,. converges in trace norm to a trace class operator
S;,y which is independent of the choice of the sequences {z,} and {y,}.

We now state the following result:

Theorem A (Theorem 4.1 of [9]). For every pair x, yec HRH,
there exists o unique trace class operator S,, which is conjugate
bilinear in x, y satisfying (i) S,=8S,,.>0, (i) Sk,=S,,, (i) Tr[S,,]
=<z |y, (iv) Uniform norm ||S, ,|| < Trace norm IS, ,1<||z| - ||y], and
(V) S,, ts completely positive; that is, for any finite sequences
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{xi}CH@)@ and {z;}C 9, th} {24y Suy,0,21) 20.

In this note we are concerned only with the case S,=S, ,; hence
in this case S, is a positive, self-adjoint operator with finite trace,
and S, is an S-operator.

Let § be a real separable Hilbert space, and let H=L,(2, A, ).

In this case L,(2,9)=L,(2)®$H. We now prove the following re-
presentation theorem.

Theorem. For every x € L2, 9) there is probability measure v,
on  such that the S-operator S, is the covariance operator of v, ; that
18 S, admits the representation

(8.0, g>= j RGO} (9)

Proof. Let xe L,(®9, i.e. xzz\_‘_, &,Oh,;, where &, L,(2) is a
{=1
real-valued random variable, and 2, ¢ . Now

(S.0,9y= 3 €0 & )ho 0 <0, 1>
= 5[] c@2 (@du@)] i, 9> <o, 1>
=[, 35 <o 95 0, hyE(@E (@)
=[, 2 <€ whn 95 <0.& @h,>dp(w)
=L< 231 §(w)Oh,, g>2dp(w)
= L(ac(w), gydp.

Hence
(8.9 g>=ja<x(w), 9> dp(w) (10)

From the definition of the probability measure v,, for every
measurable function ¢ on §,

I @¢duz=ja(¢ox)dy. 11)

we can take ¢ as the continuous function on § given by ¢o(f)=<{f, 9)%
for fixed g. Hence

[o<r2 900 = <o), 9ydut). 12)
Using (12) in (10) we obtain (9) for any « ¢ L(2)O9.

Now let 2 € L,(2,9). Then there exists a sequence z, € L,(2)O9
such that [2,— 2],—0, where [-], is the crossnorm defined by (4). This
implies that S, —S, in trace norm, and <S,,9, 9>—<S,9,9>. We also
have_[ <wn(w),g>2dy—»j {x(w), g>*dp. Hence from (10) and (12) we

2 a2

obtain (9) for any x e L2, 9).
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We now consider another approach to the representation of S-
operators. Let 2 and y be two given elements of §. The tensor
product 2@y represents an operator on  whose defining equation is
given by (x®y)z={z, y>x for every ze § (cf. Schattan [7], p. 69; [8],
p. 7). The following result is utilized:

Theorem B (Theorem 5.1 of [9]). For any pairs x,y e L, (2,9)
and f,9€$

(Sanf g>=LTr[w(w)®y(w)-f®g]dﬂ(w), (13)

and the integrand in (13) is measurable.

As before, we restrict our attention to the case S,=S,,, and take
9 to be a real separable Hilbert space. Using the fact that (f,Qf,)
(9:®9) =<9, [0f1®9:, we have Trlz(w)®z(w) g®g]={z(w), )"

Hence (13) becomes ¢S.g, g>=j {2(w), g>*dp(w), which is (10). Utiliz-
2

ing (11) and (12), we obtain (9) for all x € L,(2, ).

3. Examples and applications. In this section we mention a
few applications of the above representations and compute the co-
variance operators associated with certain random functions.

a. An obvious application is to the characteristic functionals of
probability measures in IM(H); for example, it follows from (2) that
D,(9), the characteristic functional of a probability measure v € (D)
induced by z(w), is of the form

ﬁx(g)=exp{—§ 3 (€ )y 9549, h,>}, ged 14)

where z(w)= f £ (@)Oh,, with £,w) € L), h, € .

b. In the study of random equations in Hilbert spaces we fre-
quently encounter transformations of the form y(w)=L[xz(w)], where
2(w) is a Gaussian random variable and L is an endomorphism of £.
If m, and S, denote the expectation of # and the covariance operator
of the measure induced by v, respectively; then it is well-known (cf.
[1], pp. 141-142) that m,=Lm, and S,=LS,L*. Hence, given the
representation of S,, an explicit representation of S, can be obtained.

c. Let =L, (T, 0O, r) where T=[0, 1], 6 is the g-algebra of Borel
subsets of T, and 7 is Lebesque measure on @. Let L,(2,9) denote
the space of all $-valued measurable random functions x={x(¢, w),t € T}

such that J‘ ||z|*dp < co. In this case the tensor product Hilbert space
]

is L(Q, 9)=L(Q)®H(T)=L,(2x T). Since z is a second-order random
function its covariance kernel is of the form

R.(s, 0= als, w)att, 0)dp(). (15)
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An easy consequence of the representation (18) is that the covari-
ance operator S, on L,(T) is of the form

(S.f )(8)=LRx(S, Df®dr(t), feL(D). (16)
Also, we have Tr[S,]= ([«],)*= f n(||xl|2)2dy(w)=ITRm(s, s)dz(s)=Tr[R,].

We now assume that x is continuous in quadratic mean. In this
case the covariance kernel R,(s, t) is of the form

R.(s, =3, £L92{D an
=1 i
where the 2; are the eigenvalues and the ¢, are the eigenfunctions of
R,(s,t). Inserting (17) and (16) we have
(Sxf)(s)=j 57 290D ppyge(t)
Ti=1 A

=5 29 [ o7 dc®) =3, aw o),
= . =
where a;=4;7{¢p;, f>. This also follows from the representation of
operator S, ; namely S,,:i 27'0,Rp;.
=1

d. Let $=1,; and let v ¢ L(2)®1L,. In this case « is an l,-valued
random variable; and can be considered as a sequence {x,(w)} of real-

valued random variables such that i} |z, f<oco. Define Ry =e{xx,}.
n=1

Then, for g={g,} e l,,
<&mw=L@mxwwmw=L

= 2. 9:R{Pg;.
i,ljv.‘: 1 ij JJ

;: r(w)x ()99 ,dp(w)

i7=1
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