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3. In this part, we consider the inhomogeneous equation

( 2 )’ l-I [/ aL]u(t) ge,
where g e X and we0 real. We restrict ourselves to the case when
the Hilbert space X and the operator H L/ satisfy the following con-
ditions, and prove the so called limiting amplitude principle.

[C.1] There exists a Frchet space Y, into which X is densely
injected, with semi-norms {p(f) [p(f, f)]/ -1, 2, } having the
following properties"
(28) p(f) p+(f) f and sup p(f) f for all f e X.

[C.2] The set X’ defined below is dense in X.
Definition. We denote by X’ the set of all g e X which satisfy

the following two conditions"
( i ) Let [a, b] be any bounded interval in R. Then, as e0,

(H--a--ie)-y converges uniformly in a e [a, b] in the sense of each
p-topology.

(ii) We put (H- a iO)-g lim (H- a ie)-Xg. Then (H- a
0

iO)-Xg is a HSlder continuous function of a e R with values in Y.
[C.3] The origin 0 is not an eigenvalue of H.
Now, by the same reasoning as in the proof of Theorem 3, we see

that the initial value problem (2)’, (3) has a unique solution in the class
[(D(H-+)). Further, it follows that

OJ2m

(29) H2-3{-u(t): ()-ler nH2-t= l=
2m oerH

(cf., (26)).
Lemma . If we choose g X’, then as

2m

(30) H-3{-u(t)ie
k=l

in the sense of each p-topology.
Proo. Note that for any0 pure imaginary and f e X,



No. 3] Asymptotic Property of Solutions. II 269

and oer(-’)fe’d8
s-lira

+OdO LJO

s_lim[
Then it follows from (29) that

(81) ’-Ol-(t)

+ ()- s-lira

2m

ntH +t and O=ng.where we put

Given any >0, there exists + e X’ such that

by [C.2]. On the other hand, if we note [C.3], then there exists a suf-
ficiently large r=r(e) such that

IG-{E-E}GII <.
It follows from (i) in Definition that

dEy+={(H-a-iO)-+--(H-a +iO)-+}da/2i.
Hence, by the Riemann-Lebesgue theorem we have

1/r

Summing up we conclude that as to, the first term of the right
member of (31) tends to zero in the sense of each p-topology.

For the second term, we have

s_lim[
.+oo ya- dEfg=iet(-iH-w+iO)-9

+ lim[ e(r-’)t
dE9,

where the last limit is taken in the sense of p-topology. It is not
difficult to see that

p, (lim[ eCra-"t dEyg)O ast
,+oo

if we note (ii) in Difinition and

lira lira da 0

for each interval e which includes the origin.
Lemma 4.

equation

q.e.d.
For any feX and r=iw+ e (e0), the reduced

2m

(32)
y=l =I

3) s-lim means the strong limit in X.
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has a unique solution v e )(H). Further, it follows that
2m

(33) H2--lv,= --i (’)-(--iyH+ix)-ln2f
Proof. We put V t(v,, v, ..., -v,) and F t(0, 0, ..., f).

Then it follows from (32) that
(x--iDH)NE(H)V=NF.

Since (-iDH) is invertible, we have
E(H)V N-( iDH)-NF,

which proves (33). q.e.d.
From (30) and (33), we now get the ollowing theorem which

asserts the limiting amplitude principle.
Theorem 4. Suppose [C.1], [C.2] and [C.3]. Then for any g e X’

and =t(, , ...,) e(H) (H-) (H), the solution
u(t) of the initial value problem (2)’, (3) has the following asymptotic
properties"
(34) p(H-3[-u(t)-H-(iw)-v;et)O (]- 1, 2, ..., 2m)
as to, for each = 1, 2, ., where v; is the limit as eo + 0 of the
solution of (32) with f replaced by --g in the sense of each p-
topology.

4. xample. We consider strictly hyperbolic equations o the
form

(35) [3+P(x,D)]u(x, t)-g(x)e, 0< ,
j=l

in a domain G in Rn (n23) exterior to a sufficiently smooth compact
hypersurface 3G, where

P(x,D)=- D[a(x)D]+c(x) (D=3/3x)
,=1

We assume the followings:

[A.1] a(x) is real valued, a(x)-a(x), and a(x)c]
(c>0) for any x e G and e R. Further, a(x) is sufficiently smooth
and a(x)- is of compact support.

[A.2] c(x) 0. c(x) is sufficiently smooth and
[c(x)[.= sup (l+[x]) [Dc(x)]< +

or p In/2] 1 and 0 (n + 1 +) /2 ( 0).
n/+(G) and[A3] g(x) e.o

or p [n/2] + 1 and O (n +)/2 (> 0).
We put the boundary conditions in one o the ollowing form:

4) L(G) is the space of all functions such that D"xf(x)e L(G), [al_<p, with
’L(G) for all C-functions (x)norm F, D"xf][(a))l/2. feL,o(G) if ofe

having compact supports in G.
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(36) (Dirichlet type)
u l=P(x, D)ul-... =P(x, D)-u z-0,

(37) (Neumann type)
{+ a(x)}u --{3+ a(x)}P(x, D)u =

{+ a(x)}P(x, D)-u 0,
where 3= a(x)cos (x, )D, being the outer normal to 3G at x,

and a(x)0 and is sufficiently smooth.
Now let X=L(G) and L be the selfadjoint operator determined

uniquely from P(x, D) with domain
(Dirichlet case) (L) (G) (G)
(Neumann case) (L)-{f e C(G) (3+a(x))u]oz-O}.

Then, as is proved in Mochizuki [3], under the above assumptions,
(Lf, f)0 for all f e (L)

and the spectrum of L is strongly absolutely continuous with respect
to the Lebesgue measure. Further, if we put Y-Lo(G) with semi-
norms

p(f)= If(x)ldx G={x e G;Ixl},
and X’ being the set of unctions g(x) satisfying [A.3], then we know
also in [3] that X and H=L/ satisfy [C.1] and [C.2] in the previous
section. Hence the assertions of Theorems 3 and 4 hold true or the
solution o (35), (36)or (35), (37) if we give the initial data
=(x) in (H-+) (]=1,2,..., 2m).

In conclusion, we remark that the unction v(x) appearing in
(24) satisfies the reduced equation

(38) [-w+ aP(x, D)]v(x)= --g(x),

the boundary condition (36) or (37) and the radiation conditions or-
mulated as ollows"
(39) v(x) e C-(G) and Dv(x)]Kconst(l+]x])-(-)/;

]a]K2m-1

(40)

(]=1,2,...,m), y=min (1, 2/(1 + )),
where ()K KK. K_K+. K.
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