53. Properties of Ergodic Affine Transformations of Locally Compact Groups. I

By Ryotaro SATO Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

1. Introduction. Let G be a locally compact group. An affine transformation S of G is a one-to-one continuous transformation of G onto itself which is of the form $S(x) = a \cdot T(x)$, where a is an element of G and T is a continuous isomorphism of G onto itself. In his book, Lectures on Ergodic Theory [1], Halmos has raised a question: Can an automorphism of a locally compact but non-compact group be an ergodic measure preserving transformation? Recently Rajagopalan and Schreiber [3] have answered his question negatively, i.e., if G is a locally compact group which has an ergodic continuous automorphism with respect to a Haar measure on G then G is compact.

Then the following question has become of interest to the author: Can an affine transformation of a locally compact but non-compact group be an ergodic left Haar measure preserving transformation?

The aim of this paper is to study some properties of an ergodic affine transformation of a locally compact group and to give an answer to the above question. We shall prove the followings below:

(1) An affine transformation S of a locally compact group G which is not *bi*-continuous can not be ergodic with respect to a left Haar measure on G.

(2) An affine transformation S of a locally compact group G which is not left Haar measure preserving can not be ergodic with respect to a left Haar measure on G.

(3) If G is a locally compact totally disconnected non-discrete group which has an ergodic affine transformation S with respect to a left Haar measure on G then G is compact.

2. Properties of ergodic affine transformations.

Theorem 1. Let G be a locally compact group with a left Haar measure μ . Suppose $S(x) = a \cdot T(x)$ is an affine transformation of G which is not bi-continuous. Then S is not ergodic with respect to μ .

Proof. Since S is not *bi*-continuous, T is not *bi*-continuous. Thus there exists an open σ -compact subgroup H of G such that $T(H) \subset H$ and $T^{-1}(H)$ is not σ -compact by [2, Lemma 1].

Case I. Let there exist a positive integer n for which $S^{-n}(H) \supset H$. Let p be the smallest positive integer such that $S^{-p}(H) \supset H$. Then it R. SATO

is easy to see that if *m* is a positive integer such that $S^{-m}(H) \supset H$ then m = kp for some positive integer *k*. Since $S^{-p}(H)$ is not σ -compact, there exists an element x_1 in $S^{-p}(H)$ such that $(x_1H) \cap H = \phi$. Since x_1H is σ -compact and *S* is continuous, $\bigcup_{n=0}^{\infty} S^n(x_1H)$ is σ -compact. So there exists an element x_2 in $S^{-p}(H)$ such that $(x_2H) \cap H = (x_2H) \cap \left[\bigcup_{n=0}^{\infty} S^n(x_1H)\right] = \phi$. Since x_1H is open, $\bigcup_{n=1}^{\infty} S^{-n}(x_1H)$ is open. Hence the set

$$E = \bigcup_{n = -\infty}^{\infty} S^n(x_1 H)$$

is a Borel set and clearly $S^{-1}(E) = E$ and $\mu(E) > 0$ since E has non-void interior.

If $(x_2H) \cap E \neq \phi$ then there exists a positive integer *n* for which $(x_2H) \cap S^{-n}(x_1H) \neq \phi$. So $S^{-p}(H) \cap S^{-(n+p)}(H) \neq \phi$, hence $H \subset S^{-p}(H) \subset S^{-(n+p)}(H)$, thus n+p=kp for some $k \geq 2$. Since this is impossible from the choice of x_1 and x_2 and the fact that $S^{-p}(H) \supset H$, x_2H and E are disjoint. Therefore $\mu(G \cap E^c) \geq \mu(x_2H) > 0$.

Case II. Let $S^{-n}(H) \cap H = \phi$ for all positive integers *n*. Then $S^{m}(H) \cap S^{n}(H) = \phi$ for $m \neq n$. Since $S^{-1}(H)$ is not σ -compact, there exist two elements x_{1} and x_{2} in $S^{-1}(H)$ such that $(x_{1}H) \cap (x_{2}H) = \phi$. The set

$$F = \bigcup_{n = -\infty}^{\infty} S^n(x_1 H)$$

is a Borel set such that $S^{-1}(F) = F$, $\mu(F) > 0$ and $\mu(G \cap F^c) \ge \mu(x_2H) > 0$. The proof is complete.

Theorem 2. Let G be a locally compact group with a left Haar measure μ . Suppose $S(x) = a \cdot T(x)$ is an affine transformation of G which is not μ measure preserving. Then S is not ergodic with respect to μ .

Proof. By Theorem 1, we may assume that S is *bi*-continuous. So T is *bi*-continuous, whence there exists a constant $\delta > 0$ such that $\mu(T(E)) = \delta \mu(E)$ for all Borel sets E by uniqueness of left Haar measure. Therefore $\mu(S(E)) = \mu(a \cdot T(E)) = \mu(T(E)) = \delta \mu(E)$. Since $S^{-1}(x) = T^{-1}(a^{-1}) \cdot T^{-1}(x)$, we have $\mu(S^{-1}(E)) = \mu(T^{-1}(E)) = \delta^{-1}\mu(E)$. Since S is not μ measure preserving, it follows $\delta \neq 1$.

Case I. Let $\delta > 1$. Since S is not μ measure preserving, G can not be compact or discrete. Thus for any positive number ε there exists a nonvoid open set U which satisfies $\mu(U) < \varepsilon$. Now let V be a compact neighborhood of the identity e of G. Let $W = \bigcup_{n=0}^{\infty} S^{-n}(V)$. Then

$$\mu(W) \leq \sum_{n=0}^{\infty} \mu(S^{-n}(V)) = \left(\sum_{n=0}^{\infty} \delta^{-n}\right) \mu(V) = \frac{\delta}{\delta - 1} \mu(V) < \infty$$

No. 3]

Clearly $S(W) \supset W$, so we have $S^n(G \cap W^c) \cap W = \phi$ for $n=0, 1, 2, \cdots$. Since W is σ -compact, there exists a σ -compact open subgroup H of G such that $W \subset H$. Therefore there exists a Borel set E such that

$$E \subset G \cap W^c$$
 and $0 < \mu(E) < \frac{\delta - 1}{2\delta} \mu(V)$.

Then

$$\mu\left(\bigcup_{n=1}^{\infty}S^{-n}(E)\right)<\mu(V)/2.$$

Let $F = \bigcup_{n=-\infty}^{\infty} S^n(E)$. Then $S^{-1}(F) = F$, $\mu(F) > 0$ and $\mu(G \cap F^c) > 0$. So S is not ergodic with respect to μ .

Case II. Let $\delta < 1$. Then $S^{-1}(x) = T^{-1}(a^{-1}) \cdot T^{-1}(x)$ is not ergodic by Case I, whence S is not ergodic.

The proof is complete.

By Theorems 1 and 2, an affine transformation $S(x) = a \cdot T(x)$ of a locally compact group G which is ergodic with respect to a left Haar measure μ on G is *bi*-continuous and μ measure preserving. Thus an ergodic S induces a unitary operator U(S) of $L^2(G, \mu)$ as follows

$$(U(S)f)(x)=f(S(x))$$
 for $f\in L^2(G,\mu)$.

Let for y in G, V(y) be the unitary operator of $L^2(G, \mu)$ which is defined by

$$(V(y)f)(x) = f(yx)$$
 for $f \in L^2(G, \mu)$.

The following two lemmas are contained in [5].

Lemma 1. Let $S(x) = a \cdot T(x)$ be an affine transformation of a locally compact group G which is ergodic with respect to a left Haar measure μ on G. Then

 $V(S^{n}(y)) = [U(T)]^{-n}V(y)[U(S)]^{n}$

for every integer n and every y in G.

Lemma 2. Let H be a complex Hilbert space, let A be a bounded operator and U_1 and U_2 unitary operators on H. Then for given ξ and η in H, the sequence $\langle AU_1^n(\xi), U_2^n(\eta) \rangle_{n=-\infty}^{\infty}$ is a sequence of Fourier-Stieltjes coefficients of some complex regular measure on the torus $K = \{ \exp(i\theta) | 0 \le \theta < 2\pi \}.$

Theorem 3. If G is a locally compact totally disconnected nondiscrete group which has an ergodic affine transformation $S(x) = a \cdot T(x)$ with respect to a left Haar measure μ on G then G is compact.

Proof. Let N be a compact open subgroup of G and let μ be normalized so that $\mu(N)=1$. Let U(S) and V(y) be as above. For y in G and n an integer we define

$$a_n(y) = \langle V(y)[U(S)]^n \chi_N, [U(T)]^n \chi_N \rangle$$

= $\langle [U(T)]^{-n} V(y)[U(S)]^n \chi_N, \chi_N \rangle,$

where χ_N is the indicator function of N. Then from Lemma 1 we observe

$$a_{n}(y) = \langle V(S^{n}(y))\chi_{N}, \chi_{N} \rangle$$

=
$$\int_{G} \chi_{N}(S^{n}(y)x)\chi_{N}(x)d\mu(x)$$

=
$$\begin{cases} 1 & \text{if } y \in S^{-n}(N) \\ 0 & \text{if } y \notin S^{-n}(N). \end{cases}$$
(1)

Thus

$$a_n(S(y)) = \langle V(S^{n+1}(y))\chi_N, \chi_N \rangle = a_{n+1}(y).$$

By Lemma 2 and (1), the sequence $\langle a_n(y) \rangle_{n=-\infty}^{\infty}$ is a sequence of Fourier-Stieltjes coefficients of some idempotent measure on the torus K. Hence the sequence $\langle a_n(y) \rangle_{n=-\infty}^{\infty}$ differs from a periodic sequence at most finitely many places (see for example [4, 3.1.6]). So the set \mathfrak{M} of all sequences $\langle a_n \rangle_{n=-\infty}^{\infty}$ which is of the form $\langle a_n \rangle_{n=-\infty}^{\infty} = \langle a_n(y) \rangle_{n=-\infty}^{\infty}$ for some y in G is countable. For $\langle a_n \rangle_{n=-\infty}^{\infty} \in \mathfrak{M}$, let $M(\langle a_n \rangle_{n=-\infty}^{\infty})$ be the set defined by

$$\begin{split} M(\langle a_n \rangle_{n=-\infty}^{\infty}) = & \{ y \in G \, | \, \langle a_n \rangle_{n=-\infty}^{\infty} = \langle a_n(y) \rangle_{n=-\infty}^{\infty} \} \\ = \bigcap_{n=-\infty}^{\infty} S^{-n}(N^{\epsilon_n}), \end{split}$$

where $N^{\epsilon_n} = N$ if $\varepsilon_n = a_n = 1$ and $N^{\epsilon_n} = G \cap N^c$ if $\varepsilon_n = a_n = -1$. Since N is open and closed, $M(\langle a_n \rangle_{n=-\infty}^{\infty})$ is an intersection of open and closed sets, so closed. By the Baire category theorem, there exists at least one sequence $\langle a_n \rangle_{n=-\infty}^{\infty}$ in \mathfrak{M} such that $M(\langle a_n \rangle_{n=-\infty}^{\infty})$ has non-void interior. Then the set

$$\begin{split} M^*(\langle a_n \rangle_{n=-\infty}^{\infty}) &= \bigcup_{j=-\infty}^{\infty} S^j(M(\langle a_n \rangle_{n=-\infty}^{\infty})) \\ &= \{ y \in G \, | \, \langle a_n \rangle_{n=-\infty}^{\infty} = \langle a_{n+k}(y) \rangle_{n=-\infty}^{\infty} \text{ for some integer } k \} \end{split}$$

must be almost all of G since S is ergodic.

Let $a_n=0$ for all but finitely many n. Let $k=1+\max\{|m-n| \mid a_m = a_n = 1\}$. Since G is non-discrete, μ is not atomic. Thus for $\varepsilon = 1/(2k+1)$, there exists a neighborhood W of the identity e of G such that $\mu(W) < \varepsilon$ and $W \subset N$. Since $\{S^j(W) \mid j=0, \pm 1, \pm 2, \cdots\}$ covers almost all of N and S is μ measure preserving, it follows that $\{j \mid S^j(W) \cap N \neq \phi\}$ contains at least (2k+1) integers. So there exists an integer i such that $S^i(W) \cap N \neq \phi$ and $|i| \ge k$. Hence

 $N \cap S^{-i}(N) \supset W \cap S^{-i}(N) \neq \phi$

and

$$M^*(\langle a_n \rangle_{n=-\infty}^{\infty}) \cap (N \cap S^{-i}(N)) = \phi.$$

This is impossible, thus $a_n=1$ for infinitely many n. For such an essentially periodic sequence there exists a positive integer p such that in every interval of length p there exists at least one integer n such that $a_n=1$, and so

$$M^*(\langle a_n \rangle_{n=-\infty}^{\infty}) \subset N \cup S(N) \cup \cdots \cup S^p(N).$$

This establishes Theorem 3.

References

- [1] P. R. Halmos: Lectures on Ergodic Theory. Tokyo (1956).
- [2] M. Rajagopalan: Ergodic properties of automorphisms of a locally compact group. Proc. Amer. Math. Soc., 17, 372-376 (1966).
- [3] M. Rajagopalan and B. Schreiber: Ergodic properties of automorphisms of a locally compact group. II (to appear).
- [4] W. Rudin: Fourier Analysis on Groups. New York (1962).
- [5] R. Sato: Continuous affine transformations of locally compact totally disconnected groups. Proc. Japan Acad., 46, 143-146 (1970).