52. An Estimate from above for the Entropy and the Topological Entropy of a C¹-diffeomorphism

By Shunji Ito

(Comm. by Kunihiko KODAIRA, M. J. A., March 12, 1970)

Let φ be a C^1 -diffeomorphism from an *n*-dimensional Riemannian manifold on itself, $h(\varphi)$ the topological entropy [1] of φ and let λ be a contractive constant of φ . In this paper, we will give an estimate from above for the topological entropy:

$h(\varphi) \leq n \log 1/\lambda$

Using a result of L. Goodwyn [3], one can derive also an estimate from above for the measure theoretic entropy [7]:

$h_{\mu}(\varphi) \leq n \log 1/\lambda$

and this estimate is sharper than Kuchinirenko's [6] and A. Avez's [2].

§1. Definitions and a property.

Let φ be a homeomorphism from a compact metric space X onto itself. If α is any open cover of X, we let $N(\alpha)$ be the number of members in a subcover of α of minimal cardinality. As in [1], the limit exists in the following definition:

$$h(\alpha, \varphi) = \lim_{m \to \infty} \frac{1}{m} \log N(V_{i=0}^{m-1} \varphi^i \alpha)^{*}$$

Let α_t be the collection of all open spheres of radius t>0. In metric spaces, the topological entropy $h(\varphi)$ of φ can be defined as $h(\varphi) = \lim h(\alpha_t, \varphi)$. (This is equivalent to the usual definition.)

For any t>0, let β_t be any cover of subset A of X by arbitrary sets of diameter $\leq 2t$.

For any set A of X, define $M_t(A)$ to be the number of members in subcover of β_t of minimal cardinality. Then as in [5], we define the lower metrical dimension dim A of set A by

$$\underline{\dim} A = \underline{\lim}_{t \to 0} \frac{\log M_t(A)}{\log 1/t}$$

and define the dimension $\dim A$ of set A by

$$\dim A = \lim_{t \to 0} rac{\log M_t(A)}{\log 1/t}$$
 if the limit

exists.

Property 1 [5]. Let X be an n-dimensional Euclidian space and suppose a compact subset A of X has interior points.

^{*)} As in [1], we write $\alpha \lor \beta = \{U \cap V : U \in \alpha, V \in \beta\}$ and we write $\alpha > \beta$ to mean that α is a refinement of β .

No. 3]

Then

$$\dim A = \dim A = n.$$

Finally, when homeomorphism φ on a compact metric space has a positive real number $\lambda(1 \ge \lambda > 0)$ such that $d(\varphi(p), \varphi(q)) \ge \lambda \cdot d(p, q)$ for any $p, q \in M$, we call homeomorphism φ contractive and λ a contractive constant of φ .

§2. Lemmas and theorems.

Let M be a compact *n*-dimensional Riemannian manifold, $d: M \times M \to R$ a metric on M induced by some smooth Riemannian metric and let φ be a C^1 -diffeomorphism on M. In this case we can obtain following lemma.

Lemma 1. φ is contractive and a contractive constant is given by

$$\lambda = \inf_{p \in M} \inf_{v_p \in T_p M} \frac{\|\varphi_* v_p\|}{\|v_p\|},$$

where T_pM is tangent space at $p \in M$.

Proof. To prove Lemma 1, it is sufficient to consider the case of a connected manifold. Since φ is a C^1 -diffeomorphism and $\{v_p \mid ||v_p|| = 1, v_p \in T_p M\}$ is a compact subset of $T_p M$, the smoothness of Riemannian metric implies that

$$\inf_{p \in M} \inf_{v_p \in T_p M} \frac{\|\varphi_* v_p\|}{\|v_p\|} = \inf_{p \in M} \inf_{\|v_p\|=1} \|\varphi_* v_p\| = \lambda > 0.$$

By definition, the metric d(p, q) is given by

 $d(p,q) = \inf L(c; a, b)$

where $c: I = (a, b) \rightarrow M$ is a C^1 -curve satisfying c(a) = p and c(b) = q, and $L(c; a, b) = \int_a^b ||v_{c(t)}|| dt$. For $\varphi(p)$ and $\varphi(q)$, there exists a curve $\varphi \circ c'$, where c' is a curve joining p and q. From the definition of λ ,

$$L(\varphi \circ c'; a', b') = \int_{a'}^{b'} \|\varphi_* v_{c'(t)}\| dt$$
$$\geq \lambda \int_{a'}^{b'} \|v_{c'(t)}\| dt \geq \lambda d(p, q).$$

In the next lemma we apply the elementary sublemma.

Sublemma. Suppose $\{a^{(i)}(t)\}, i=1, 2, \dots, k$, are positive integer valued functions defined on $(0, \delta)$ such that

$$\lim_{t\to 0} \frac{\log a^{(i)}(t)}{\log 1/t} = a^{(i)} \quad exists \ for \ all \ i.$$

Then

$$\lim_{t\to 0} \frac{\log \left(\sum_{i=1}^{k} a^{(i)}(t)\right)}{\log 1/t} = \max (a^{(1)}, a^{(2)}, \cdots, a^{(k)}).$$

Lemma 2. Let M be a compact n-dimensional Riemannian manifold.

Then

$\dim M = n.$

Proof. For any $p \in M$, there exists a convex chart (U, ψ) on M, that is two arbitrary points in U can be joint by a geodesic segment contained in U, where $\psi(U)$ is also convex. Without loss of generality, we can suppose that the diffeomorphism ψ is defined on \overline{U} . Let ρ be the usual metric on a *n*-dimensional Euclidean space. From the compactness of $\psi(\overline{U})$ and the convexity of \overline{U} and $\psi(\overline{U})$, we can deduced that there exists a constant $1 \ge \mu > 0$ such that

(c)
$$\frac{1}{\mu}d(p,q) \ge \rho(\psi(p),\psi(q)) \ge \mu d(p,q)$$
 for all $p,q \in \overline{U}$.

Proof of this is similar to that for Lemma 1. Now for any t>0, let β_t be any cover of \overline{U} (by arbitrary sets) with diam $\beta_t \leq 2t$. Then $\psi(\beta_t)$ is a cover of $\psi(\overline{U})$ with diam $\psi(\beta_t) \leq 2t/\mu$. Thus

$$M_t(U) \geqslant M_{t/\mu}(\psi(U)), \quad ext{and} \ \lim_{t \to 0} rac{\log M_t(ar{U})}{\log 1/t} \geqslant \lim_{t \to 0} rac{\log M_{t/\mu}(\psi(ar{U}))}{\log \mu/t} \cdot rac{\log \mu/t}{\log 1/t}.$$

Property 1 implies

$$\lim_{t\to 0} \frac{\log M_t(U)}{\log 1/t} \ge n$$

On the other hand, we can get similarly,

$$n \geqslant \overline{\lim_{t \to 0}} \frac{\log M_t(\bar{U})}{\log 1/t}$$

Therefore

dim
$$\bar{U}=n$$

For all $p \in M$, there exists such a convex chart (U_p, ψ_p) . From the compactness of M, there exist finite convex charts U_1, \dots, U_k satisfying

$$\bigcup_{i=1}^k U_i = M.$$

Using a sublemma, we can show

$$\overline{\lim_{t\to 0}} \frac{\log M_t(M)}{\log 1/t} \leqslant \overline{\lim_{t\to 0}} \frac{(\log \sum_{i=1}^k M_t(\bar{U}_i))}{\log 1/t} = \lim_{t\to 0} \frac{\log \left(\sum_{i=1}^k M_t(\bar{U}_i)\right)}{\log 1/t} = n.$$

On the other hand

$$n = \lim_{t \to 0} \frac{\log M_t(\bar{U}_i)}{\log 1/t} \leq \lim_{t \to 0} \frac{\log M_t(M)}{\log 1/t}.$$

Therefore we get $\dim M = n$.

Remark. Lemmas 1, 2 are also true in the case of a smooth compact Riemannian manifold with boundary. Proof of Lemma 2 is more complex in this case. Roughly speaking, when we consider the metric ρ to be induced from a curve on \mathbb{R}^n , the relation (c) is true in Lemma 2. Moreover by compactness, there exists a positive large number M satisfying $M\rho'(\psi(p), \psi(q)) \ge \rho(\psi(p), \psi(q))$, where ρ' is a usual No. 3]

metric on \mathbb{R}^n . Take a sufficiently small constant μ , then the relation (c) for a usual metric ρ' is also true.

Theorem 1. Let M be an n-dimensional compact Riemannian manifold, $\varphi \in C^1$ -diffeomorphism on M.

Then the topological entropy of φ is finite and satisfies

$$h(\varphi) \leqslant n \log 1/\lambda, \quad 1 \geqslant \lambda > 0$$

where λ is a contractive constant of φ . In particular, λ is chosen by $\lambda = \inf_{p \in M} \inf_{v_p \in T_p M} \frac{\|\varphi_* v_p\|}{\|v_p\|}$

Proof. From Lemma 1, it follows that for any t>0

$$\alpha_t \vee \varphi \alpha_t \vee \cdots \vee \varphi^{m-1} \alpha_t < \beta_{\lambda^{m-1}t/3},$$

where α_t is the collection of all open spheres of radius t and $\beta_{2m-1_{t/3}}$ is any cover of M with diam $\beta_{\lambda^{m-1}t/3} \leq 2\lambda^{m-1}t/3$. Therefore, $N(\alpha_t \vee \varphi \alpha_t)$ $\vee \cdots \vee \varphi^{m-1}\alpha_t \leq M_{\lambda^{m-1}t/3}(M)$. From this, it follows that

$$\lim_{m\to\infty}\frac{1}{m}\log N(\alpha_t\vee\varphi\alpha_t\vee\cdots\vee\varphi^{m-1}\alpha_t)\\\leqslant\lim_{m\to\infty}\frac{\log M_{\lambda^{m-1}t/3}(M)}{\log 3/\lambda^{m-1}t}\cdot\frac{\log 3/\lambda^{m-1}t}{m}.$$

Now, from Lemma 2,

 $\lim_{m\to\infty}\frac{\log M_{\lambda^{m-1}t/3}(M)}{\log 3/\lambda^{m-1}t}=n \quad \text{and,} \quad \lim_{m\to\infty}\frac{\log 3/\lambda^{m-1}t}{m}=\log 1/\lambda.$

Thus, $h(\alpha_t, \varphi) \leq n \log 1/\lambda$ for all t > 0. From the definition of $h(\varphi)$ it follows that

$$h(\varphi) \leq n \log 1/\lambda.$$
 q.e.d.

The idea of Theorem 1 above can be used to prove a more general result.

Theorem 2. Let X be a compact metric space, and assume that a homeomorphism φ has a contractive constant $1 \ge \lambda > 0$.

Then

$h(\varphi) \leq \dim(X) \log 1/\lambda.$

Now the following theorem was proved by L. Goodwyn.

Theorem [3]. Let X be a compact metric space, μ a probability measure on X and let φ be a homeomorphism on X preserving the measure μ .

Then

$$h_{\mu}(\varphi) \leq h(\varphi),$$

where $h_{\mu}(\varphi)$ is the measure theoretic entropy [7].

From this theorem and Theorem 1, the following sharper form of the theorem of Kuchnirenko [6] and Avez [2] can be proved.

Theorem 3. Let (M, μ, φ) be a classical dynamical system, that is to say, M is an n-dimensional compact Riemannian manifold, μ is a probability measure and the C¹-diffeomorphism φ is measure preserving.

Then

$$h_{\mu}(\varphi) \leqslant n \log 1/\lambda,$$

where λ is a contractive constant of $\phi.$ In particular, λ is chosen by

$$\lambda = \inf_{p \in \mathcal{M}} \inf_{v_p \in T_{p\mathcal{M}}} \frac{\|\varphi_* v_p\|}{\|v_p\|}$$

§3. Examples on a flow.

Let $\{\varphi_t | -\infty < t < \infty\}$ be a flow, that is a one parameter group of diffeomorphisms on M. In [4], we could consider a topological entropy of a flow. Thus we can derive the following estimate.

Theorem 4. Let M be an n-dimensional compact Riemannian manifold and let $\{\varphi_t\}$ be a flow on M.

Then the topological entropy of $\{\varphi_t\}$ satisfies

$$h(\varphi_1) = \frac{1}{|t|} h(\varphi_t) \leq \frac{1}{|t|} n \log 1/\lambda(t) \qquad (t \neq 0),$$

where

$$\lambda(t) = \inf_{p \in M} \inf_{v_p \in T_p M} \frac{\|(\varphi_t)_* v_p\|}{\|v_n\|}.$$

Example 1. Let M be a compact connected *n*-dimensional Riemann manifold. If the Gaussian curvature R is non negative, then the geodesic flow on the unitary tangent bundle T_1M has a zero topological entropy.

Proof. Use Theorem 4 and observe

 $\lambda(1/\sqrt{R})=1$ as R>0 and $1/\lambda(t) \leq 1+t$ as R=0.

Example 2. A holocycle flow has a zero topological entropy.

Proof. Use Theorem 4 and observe that $1/\lambda(t)$ is bounded from above by a polynomial P(t).

In conclusion I would like to express my thanks to Professor G. Maruyama, Professor Yuji Ito and Mr. T. Takahashi for encouragement and valuable discussions.

References

- R. Adler, A. Konheim, and M. McAndrew: Topological entropy. Trans. Amer. Math. Soc., 144, 309-319 (1965).
- [2] A. Avez: Ergodic Theory of Dynamical Systems. VI. Lecture Note. Univ. of Minesota (1966).
- [3] L. Goodwyn: Topological entropy bounds measure theoretic entropy. Preprint, Univ. of Kentucky (to appear).
- [4] S. Ito: On the topological entropy of a dynamical system. Proc. Japan Acad., 45, 838-840 (1969).
- [5] A. Kolmogorov and V. Tihomirov: *e*-entropy and *e*-capacity of sets in functional spaces. Amer. Math. Soc. Translations, **17** (2) (1961).
- [6] A. G. Kuchnirenko: An estimate from above for the entropy of a classical system. Sov. Math. Dokl., 6, No. 2, 360-362 (1965).
- [7] V. Rohlin: Lectures on the entropy theory of measure-preserving transformations. Russian Math. Surveys, 22 (5), 1-52 (1967).

 $\mathbf{230}$