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An Estimate from above for the Entropy and the
Topological Entropy of a C.diffeomorphism

By Shunji IT0

(Comm. by Kunihiko KODAIIA, M. $. A., March 12, 1970)

Let be a C-diffeomorphism from an n-dimensional Riemannian
manifold on itself, h(f) the topological entropy [1] of and let 2 be a
contractive constant of . In this paper, we will give an estimate
from above for the topological entropy:

h((f)<n log 1/
Using a result of L. Goodwyn [3], one can derive also an estimate

from above for the measure theoretic entropy [7]:
h(f) <n log 1/

and this estimate is sharper than Kuchinirenko’s [6] and A. Avez’s
[2].

1. Definitions and a property.
Let ? be a homeomorphism from a compact metric space X onto

itself. I is any open cover of X, we let N(a) be the number o
members in a subcover o q o minimal cardinality. As in [1], the
limit exists in the following definition"

h(, )-lim __1 log N(V qo)*)

m
Let at be the collection of all open spheres o radius t0. In

metric spaces, the topological entropy h() o ? can be defined as

h()-lim h(t, q). (This is equivalent to the usual definition.)

For any t0, let fit be any cover of subset A of X by arbitrary
sets of diameter< 2t.

For any set A o X, define Mr(A) to be the number o members in
subcover of fit o minimal cardinality. Then as in [5], we define the
lower metrical dimension dim A of set A by

dim A lim log Mr(A)
t0 log 1/t

and define the dimension dim A o set A by

dim A-lim log Mr(A) i the limit
t-0 log 1/t

exists.
Property 1 [5]. Let X be an n-dimensional Euclidian space and

suppose a compact subset A of X has interior points.
*) As in [1], we write aV---{UNV:Uea, Ve} and we write a> to mean

that a is a refinement of f.
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Then
dim A-dim A n.

Finally, when homeomorphism p on a compact metric space has
a positive real number (1> 0) such that d(q(p), q(q)) >/. d(p, q) for
any p, q e M, we call homeomorphism contractive and a contractive
constant of (f.

2. Lemmas and theorems.
Let M be a compact n-dimensional Riemannian manifold, d"M M

R a metric on M induced by some smooth Riemannian metric and
let be a C-diffeomorphism on M. In this case we can obtain
ollowing lemma.

Lemma 1. is contractive and a contractive constant is given by

2-- inf inf [[P,vII

where TM is tangent space at p e M.
Proof. To prove Lemma 1, it is sufficient to consider the case of

a connected manifold. Since is a Ci-diffeomorphism and (vl IIvl]
=l,veTM is a compact subset of TM, the smoothness of
Riemannian metric implies that

inf inf II,vl[ =inf inf II,vll=2O.

By definition, the metric d(p, q) is given by

d(p, q)=inf L(c; a, b)
where c" I-(a, b)M is a C-curve satisfying c(a)-p and c(b)=q, and

;a, b)-.[[v(t)Ildt. For 9(p) and 9(q), there exists a curve 9oL(c c
where c’ is a curve joining p and q. From the definition of I,

L( c’; a’, b’)= [Iq,v,(,)lldt
at

2[’ [[v,(t)lldt>/d(p, q).
Ja

In the next lemma we apply the elementary sublemma.
Sublemma. Suppose (a()(t)}, i=- 1, 2, ., k, are positive integer

valued functions defined on (0, ) such that

lim log a()(t)_a( exists for all i.
t0 log 1/t

Then

lim log , a(*)(t))
t-0 log 1 / t

Lemma 2.

manifold.

--max(a(" a() a())

Let M be a compact n-dimensional Riemannian
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Then
dim M--n.

Proof. For any p e M, there exists a convex chart (U, ) on M,
that is two arbitrary points in U can be joint by a geodesic segment
contained in U, where +(U) is also convex. Without loss of generality,
we can suppose that the diffeomorphism is defined on U. Let p be
the usual metric on a n-dimensional Euclidean space. From the
compactness of (U) and the convexity of U and (U), we can deduced
that there exists a constant 1 >/ >0 such that

(c) 1--.d(p, q) >/p((p), +(q)) > [2d(p, q) for all p, q e 7.

Proof of this is similar to that for Lemma 1. Now for any t >0, let
be any cover of U (by arbitrary sets) with diam fit <2t. Then (/t) is
a cover o (7) with diam (tSt)<2t//2. Thus

M,( U) >Mt/,,(( U)), and

lira log M,(U) >/lira log M/((U)) log/2 / t.
t-.o log 1/t t0 log//t log

Property 1 implies

lim log M(U) >/n.
0 log 1 / t

On the other hand, we can get similarly,

n/> lim
log M,(U).

-0 log 1 / t
Therefore

dim U-- n.
For all p e M, there exists such a convex chart (U, ). From the
compactness of M, there exist finite convex charts U, ., U satisfying

U-M.
g=l

Using a sublemma, we can show
(lim log Mr(m) <1-- (log ,= Mt(U,)) -lim log ,= mt(ft)) --n.

t-.0 log 1 / t t-.0 log 1 / t t-.0 log 1 / t
On the other hand

n lira log Mr(U,) < lira log Mt(M)
t-0 log 1 / t t-0 log 1 / t

Therefore we get dim M=n.
Remark. Lemmas 1, 2 are also true in the case of a smooth

compact Riemannian manifold with boundary. Proof of Lemma 2 is
more complex in this case. Roughly speaking, when we consider the
metric p to be induced from a curve on R=, the relation (c) is true in
Lemma 2. Moreover by compactness, there exists a positive large
number M satisfying Mp’(+(p), +(q))>/p(q(p), +(q)), where p’ is a usual
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metric on R. Take a sufficiently small constant/, then the relation
(c) for a usual metric p’ is also true.

Theorem 1. Le$ M be an n-dimensional compac$ Riemannian
manifold, p a C-diffeomorphism on M.

Then the topological entropy of is finite and satisfies
h(p)<n log 1/, 1>0,

where is a contractive constant of q. In particular, is chosen by

=inf inf

Proof. From Lemma 1, it follows that for any t0
at k/ l)O / / Dm-lot< m-lt/3,

where is the collection of all open spheres of radius t and/-t/3 is
any cover of M with diam /-u3<2-t/3. Therefore,
/. V(?-)<M-/3(M). From this, it follows that

lim 1_ log N(otVatV V
m

<lim
log M-uz(M) .log 3/2-t.
log 3/2-t m

Now, from Lemma 2,

lim log M-u/(M) -n and,- log 3/-t
Thus, h(at, )<n log 1/2 for all t> 0.
follows that

lim log 3 /m-lt log 1/2.

From the definition of h() it

h((f) <n log 1/l. q.e.d.
The idea of Theorem 1 above can be used to prove a more general

result.
Theorem 2. Let X be a compact metric space, and assume that

a homeomorphism has a contractive constant 1>>0.
Then

h()< dim (X) log 1/2.
Now the following theorem was proved by L. Goodwyn.
Theorem [3]. Let X be a compact metric space, l a probability

measure on X and let be a homeomorphism on X preserving the
measure l.

Then
h()<h(),

where h,() is the measure theoretic entropy [7].
From this theorem and Theorem 1, the following sharper form of

the theorem of Kuchnirenko [6] and Avez [2] can be proved.
Theorem :. Let (M, t, ) be a classical dynamical system, that

is to say, M is an n-dimensional compact Riemannian manifold, l
is a probability measure and the C-diffeomorphism is measure
preserving.
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Then
h()<n log 1 /,

where is a contractive constant of . In particular, is chosen by

=inf inf II.vll

3. Examples on a flow.
Let {1--oo (t( oo} be a flow, that is a one parameter group of

diffeomorphisms on M. In [4], we could consider a topological entropy
of a flow. Thus we can derive the following estimate.

Theorem 4. Let M be an n-dimensional compact Riemannian
manifold and let {qt} be a flow on M.

Then the topological entropy of {t} satisfies
1 h() 1h(9) n log 1/2(0 0),

where

2(t)= inf inf
IIv ll

Exarnple 1. Let M be a compact connected n-dimensional
Riemann manifold. If the Gaussian curvature R is non negative, then
the geodesic flow on the unitary tangent bundle TM has a zero
topological entropy.

Proof. Use Theorem 4 and observe
I(1//R)=I as R0 and 1/2(t)<l+t as R=0.

Example 2. A holocycle flow has a zero topological entropy.
Proof. Use Theorem 4 and observe that 1/2(t) is bounded from

above by a polynomial P(t).
In conclusion I would like to express my thanks to Professor

G. Maruyama, Professor Yuji Ito and Mr. T. Takahashi for encourage-
ment and valuable discussions.
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