48. Abelian Groups and *R*-Semigroups^{*}

By Takayuki TAMURA

University of California, Davis, California, U.S.A.

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1970)

§1. Introduction. A commutative archimedean cancellative semigroup without idempotent is called an \Re -semigroup. The author obtained the following [3 or 1, p. 136].

Theorem 1. Let K be an abelian group and N be the set of all non-negative integers. Let I be a function $K \times K \rightarrow N$ which satisfies the following conditions:

(1) $I(\alpha, \beta) = I(\beta, \alpha)$ for all $\alpha, \beta \in K$.

(2) $I(\alpha, \beta) + I(\alpha\beta, \gamma) = I(\alpha, \beta\gamma) + I(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in K$.

(3) $I(\varepsilon, \varepsilon) = 1$. ε being the identity element of K.

(4) For every $\alpha \in K$ there is a positive integer m such that $I(\alpha^m, \alpha) > 0$.

We define an operation on the set $S=N\times K=\{(m,\alpha): m\in N, \alpha\in K\}$ by $(m,\alpha)(n,\beta)=(m+n+I(\alpha,\beta),\alpha\beta).$

Then S is an \Re -semigroup. Every \Re -semigroup is obtained in this manner. S is denoted by S = (K; I).

To prove the theorem in [3] we used the fact $\bigcap_{n=1}^{\infty} a^n S = \emptyset$, and a group-congruence was defined, which are still effective in the case where cancellation is not assumed. However the quotient group of an \Re -semigroup gives another proof of the latter half of the theorem. In this paper we study the relationship between an \Re -semigroup and abelian group as the quotient group. Theorm 2 states the relationship between the *I*-function of an \Re -semigroup and the factor system of the quotient group as the extension. Theorem 4 is the main theorem of this paper, which asserts the existence of maximal \Re -subsemigroups of a given abelian group. Theorem 5 is an application of Theorem 4 to the extension theory of abelian groups.

§2. Proof of a part of the latter half of Theorem 1. Let S be an \Re -semigroup and G be the quotient group of S, i.e. the smallest group into which S can be embedded. We may assume $S \subset G$. Let $a \in S$. The element a is of infinite order in G. Let A be the infinite cyclic group generated by a. Let $G_a = G/A$. G_a is called the structure group of S with respect to a. G is the disjoint union of the congruence classes of G modulo A.

^{*)} The research for this paper was supported in part by NSF, GP-11964.

$$G = \bigcup_{\xi \in G_a} A_{\xi}$$

where A_{ε} is the class corresponding to $\xi \in G_a$ and in particular $A_{\varepsilon}=A$. we will prove

(5) $S \cap A_{\xi} \neq \emptyset$ for all $\xi \in G_a$.

Let $x \in A_{\varepsilon}$. Recalling the definition of the quotient group, $x = bc^{-1}$ for some $b, c \in S$, or xc = b. Since S is archimedean, $cd = a^m$ for some $d \in S$ and some positive integer m. Then xc = b implies $xa^m = bd$, that is, $xa^m \in S \cap A_{\varepsilon}$. Let $S_{\varepsilon} = S \cap A_{\varepsilon}$ for $\xi \in G_a$. In particular $S_{\varepsilon} = S \cap A_{\varepsilon}$ $= \{a^{\varepsilon}: i = 1, 2, 3, \cdots\}$. Then $S = \bigcup_{\varepsilon \in G_a} S_{\varepsilon}$, and S is homomorphic onto G_a under the restriction of the natural mapping, $G \to G_a$, to S. Let $x_{\varepsilon} \in A_{\varepsilon}$ and let $\{x_{\varepsilon}: \xi \in G_a\}$ be a complete representative system of G modulo A. We will prove there is an integer $\delta(\xi)$ such that for each ξ ,

if $\delta(\xi) \leq m, x_{\xi}a^m \in S$ but if $m < \delta(\xi), x_{\xi}a^m \notin S$.

It is obvious that $x_{\xi}a^i \in S_{\xi}$ implies $x_{\xi}a^j \in S_{\xi}$ for all $j \ge i$. Since certainly $S_{\xi} \ne \emptyset$ by (5), it is sufficient to show $S_{\xi} \ne \{x_{\xi}a^i : i=0, \pm 1, \pm 2, \cdots\}$. Suppose the contrary. Then $x_{\xi} \in S_{\xi}$. By archimedeaness $yx_{\xi} = a^k$ for some $y \in S$ and some k > 0. Then $yx_{\xi}a^i = a^{k+i} \in S$ for all integers i; hence $A \subset S$. This is a contradiction to $S_{\star} = \{a^i : i \ge 1\}$. Let $p_{\xi} = a^{i(\xi)}x_{\xi}$. p_{ξ} cannot be divisible by a, in S. S_{ξ} contains p_{ξ} ; in particular $p_{\star} = a$. p_{ξ} is called a prime with respect to a. Therefore for any element x of S there is $m \ge 0$ and p_{ξ} such that $x = a^m p_{\xi}$ where m, p_{ξ} are unique and if x itself is a prime, m=0. For the remaining part the same argument as in the original paper is effective.

Theorem 2. Let S be an \Re -semigroup, S = (K; I). The quotient group G of S is the abelian extension of the additive group Z of all integers by the abelian group K with respect to the factor system $c(\alpha, \beta)^{1}$ defined by

 $c(\alpha, \beta) = I(\alpha, \beta) - 1.$ **Proof.** Let $G = \{((x, \alpha)): x \in Z, \alpha \in K\}$ in which $((x, \alpha))((y, \beta)) = ((x + y + c(\alpha, \beta), \alpha\beta)), \quad c(\alpha, \beta) = I(\alpha, \beta) - 1$

and

$$((x, \alpha))^{-1} = ((-x - c(\alpha, \alpha^{-1}), \alpha^{-1}))$$

G is the extension of $A = \{((x, \varepsilon)) ; x \in Z\}$ by *K*. Now let $S' = \{((n, \alpha)) ; \alpha \in K, n = 1, 2, \dots\}$. Then $S \cong S'$ by the map $f : (n, \alpha) \rightarrow ((n+1, \alpha))$. Next we will prove *G* is generated by *S'* in the sense of groups:

 $((0, \alpha)) = ((n, \alpha))((n, \varepsilon))^{-1}$

and if x > 0,

 $((-x, \alpha)) = ((n, \alpha))((n+x, \varepsilon))^{-1}.$

The element $(0, \varepsilon)$ of S is mapped to $((1, \varepsilon))$ of S'. It is easy to see that the structure group of S' with respect to $((1, \varepsilon))$ is isomorphic to K.

¹⁾ See [2]. c satisfies $c(\alpha, \beta) = c(\beta, \alpha)$, $c(\alpha, \beta) + c(\alpha\beta, \gamma) = c(\alpha, \beta\gamma) + c(\beta, \gamma)$, $c(\varepsilon, \varepsilon) = 0$ (ε identity).

T. TAMURA

§3. Maximal \Re -subsemigroup. Let G be an abelian non-torsion group, S be an \Re -subsemigroup of G and A be an infinite cyclic subgroup [a] of G generated by an element a of S.

Lemma 3. The following are equivalent:

(6) G is the quotient group of S. (6)

(7) $G=A \cdot S$.

(8) S intersects each congruence class of G modulo A.

Proof. (8) immediately follows from (6) as a consequence of (5) in § 2. $(7) \rightarrow (6)$, $(8) \rightarrow (7)$ are obvious.

Theorem 4. Let G be an abelian group which is not torsion. Let a be an element of infinite order of G. There exists a (maximal) \Re -subsemigroup S containing a such that G is the quotient group of S.

Proof. The operation in G and S will be denoted by +. Let D be an abelian divisible group into which G can be embedded. According to the theory of abelian groups, D is the direct sum (i.e. the restricted direct product): [See, for example, 2].

$$D = \sum_{\lambda \in A} R_{\lambda} \oplus \sum_{\mu \in M} C_{\mu}$$

where R_{λ} 's are the copies of the group of all rational numbers under addition and C_{μ} 's are the quasicyclic groups $\bigcup_{n=1}^{\infty} C(p_{\mu}^{n}), p_{\mu}$'s being various primes. Let $\pi_{\lambda}: D \to R_{\lambda}$ and $\pi_{\mu}: D \to C_{\mu}$ be the projections of D to R_{λ} and C_{μ} respectively. Since a is of infinite order there is $\lambda_{1} \in \Lambda$ such that $\pi_{\lambda_{1}}(a) \neq 0$. The reason is this: Suppose $\pi_{\lambda}(a) = 0$ for all $\lambda \in \Lambda$. Then only a finite number of the components $\pi_{\mu}(a), \mu \in M$, are not 0, therefore a would be of finite order. We assume $\pi_{\lambda_{1}}(a) > 0$.

Define $S^* = \{x \in D : \pi_{\lambda_1}(x) > 0\}.$

It is obvious that S^* is commutative, cancellative and has no idempotent, and $a \in S^*$. To prove S^* is archimedean, we see first

$$S^* \cong P_{\lambda_1} \oplus (\sum_{\substack{\lambda \in A \\ \lambda \neq \lambda_1}} R_{\lambda} \oplus \sum_{\mu \in M} C_{\mu})$$

where $a \in P_{\lambda_1}$ and P_{λ_1} is the semigroup of all positive rational numbers under addition. P_{λ_1} is archimedean, and the second factor (i.e. the sum of all factors within the parentheses) is a group, hence archimedean; therefore it is easy to show that S^* is archimedean. Thus it has been proved that S^* is an \Re -semigroup containing a. We will prove $D=A+S^*$. Let $x \in D$. Choose a positive integer n such that $n\pi_{\lambda_1}(a) + \pi_{\lambda_1}(x) > 0$. Then $n \cdot a + x \in S^*$, hence $D \subseteq A + S^*$. The other direction is obvious. Next let $S=G \cap S^*$. S will be one of \Re -semigroups which are claimed. Clearly S contains a and S is commutative, cancellative and has no idempotent. Since S^* intersects all the congruence classes of D modulo A (by Lemma 3), S^* , hence S does all the congruence classes of G modulo A, that is, G=A+S. It remains to show that S is archimedean. Let $x, y \in S$. Since S^* is archimedean there are a positive integer m and an element $z \in S^*$ such that $m \cdot x = y + z$. On the other hand since $x, y \in G, z \in G$. Consequently $z \in S$. It goes without saying that G is the quotient group of S by Lemma 3. To prove the existence of a maximal one, use Zorn's lemma: We can easily prove that if $S_{\varepsilon}, \xi \in \Xi$, are \Re -semigroups containing a as above and if $S_{\varepsilon} \subset S_{\eta}$ for $\xi < \eta$, then $\bigcup_{\varepsilon \in S} S_{\varepsilon}$ is also such one.

§4. Application to abelian group theory.

Theorem 5. Let K be an abelian group and A be the group of all integers under addition. If G is an abelian extension of A by K with respect to a factor system $f(\alpha, \beta), K \times K \rightarrow A$, then there exists a factor system $g(\alpha, \beta)$ such that

(9) $g(\alpha, \beta) \ge 0$

(10) $g(\alpha, \beta)$ is equivalent²⁾ to $f(\alpha, \beta)$.

Proof. By the assumption, let $G = \{((m, \alpha)) : \alpha \in K, m = 0, \pm 1, \pm 2, \cdots\}$ in which

(11) $((m, \alpha))((n, \beta)) = ((m+n+f(\alpha, \beta), \alpha\beta)).$

Let ε be the identity element of K. By Theorem 4 there is an \mathfrak{R} -subsemigroup S containing $((1, \varepsilon))$ such that G is the quotient group of S. Recalling the proof in §1, for each $\alpha \in K$ there is an integer $\delta(\alpha)$, in particular $\delta(\varepsilon)=1$, such that $((m, \alpha)) \in S$ for all $m \geq \delta(\alpha)$. Hence

(12) $S = \{((m, \alpha)) : m \ge \delta(\alpha), \alpha \in K\}.$

Since S is closed with respect to the group operation,

 $m+n+f(\alpha,\beta) \ge \delta(\alpha\beta)$

holds for all $m \ge \delta(\alpha)$ and all $n \ge \delta(\beta)$. This is equivalent to $\delta(\alpha) + \delta(\beta) + f(\alpha, \beta) \ge \delta(\alpha\beta)$.

Let $g(\alpha, \beta) = f(\alpha, \beta) + \delta(\alpha) + \delta(\beta) - \delta(\alpha\beta)$. Then $g(\alpha, \beta)$ is a factor system which is equivalent to $f(\alpha, \beta)$ and

$$g(\alpha, \beta) \ge 0.$$

Problem. Can Theorem 5 be directly proved without using Theorem 4? Can Theorem 5 be generalized to the case where A is an ordered group?

Addendum. Let G be a non-torsion abelian group, that is, the abelian extension of the additive group A of all integers by an abelian group K with respect to a factor system f. If δ is a map, $K \rightarrow A$, satisfying

(i) $\delta(\varepsilon) = 1 \quad \varepsilon$ being the identity of K,

(ii) $f(\alpha, \beta) + \delta(\alpha) + \delta(\beta) - \delta(\alpha\beta) \ge 0$ for all $\alpha, \beta \in K$,

²⁾ See [2]. $g(\alpha, \beta)$ is said to be equivalent to $f(\alpha, \beta)$ if there is $\varphi: K \to A$ such that $g(\alpha, \beta) = f(\alpha, \beta) + \varphi(\alpha) + \varphi(\beta) - \varphi(\alpha\beta)$.

(iii) for every $\alpha \in K$ there is a positive integer *m* such that $f(\alpha, \alpha^m) + \delta(\alpha) + \delta(\alpha^m) - \delta(\alpha^{m+1}) > 0$,

and if S is defined by (12) with (11), then S is an \Re -semigroup. Every \Re -semigroup containing $((1, \varepsilon))$ whose quotient group is G can be obtained in this manner.

References

- A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. I, Math. Surveys, No. 7. Amer. Math. Soc., Providence, R. I. (1961).
- [2] A. G. Kurosh: The Theory of Groups (English translation), Vols. I and II. Chelsea Publ. Co., New York (1960).
- [3] T. Tamura: Commutative nonpotent archimedean semigroups with cancellation law. I. Jour. Gakugei, Tokushima Univ., 8, 5-11 (1957).