# 48. Abelian Groups and $\mathfrak{R}$-Semigroups*) 

By Takayuki Tamura<br>University of California, Davis, California, (U. S. A.

(Comm. by Kenjiro Shoda, m. J. A., March 12, 1970)
§1. Introduction. A commutative archimedean cancellative semigroup without idempotent is called an $\mathfrak{R}$-semigroup. The author obtained the following [3 or 1, p. 136].

Theorem 1. Let $K$ be an abelian group and $N$ be the set of all non-negative integers. Let I be a function $K \times K \rightarrow N$ which satisfies the following conditions:
(1) $I(\alpha, \beta)=I(\beta, \alpha)$ for all $\alpha, \beta \in K$.
(2) $I(\alpha, \beta)+I(\alpha \beta, \gamma)=I(\alpha, \beta \gamma)+I(\beta, \gamma) \quad$ for all $\alpha, \beta, \gamma \in K$.
(3) $I(\varepsilon, \varepsilon)=1 . \quad \varepsilon$ being the identity element of $K$.
(4) For every $\alpha \in K$ there is a positive integer $m$ such that $I\left(\alpha^{m}, \alpha\right)>0$.
We define an operation on the set $S=N \times K=\{(m, \alpha): m \in N, \alpha \in K\}$ by $(m, \alpha)(n, \beta)=(m+n+I(\alpha, \beta), \alpha \beta)$.
Then $S$ is an $\mathfrak{N}$-semigroup. Every $\mathfrak{N}$-semigroup is obtained in this manner. $S$ is denoted by $S=(K ; I)$.

To prove the theorem in [3] we used the fact $\bigcap_{n=1}^{\infty} a^{n} S=\emptyset$, and a group-congruence was defined, which are still effective in the case where cancellation is not assumed. However the quotient group of an $\mathfrak{N}$-semigroup gives another proof of the latter half of the theorem. In this paper we study the relationship between an $\mathfrak{R}$-semigroup and abelian group as the quotient group. Theorm 2 states the relationship between the $I$-function of an $\mathfrak{R}$-semigroup and the factor system of the quotient group as the extension. Theorem 4 is the main theorem of this paper, which asserts the existence of maximal $\mathfrak{N}$-subsemigroups of a given abelian group. Theorem 5 is an application of Theorem 4 to the extension theory of abelian groups.
§2. Proof of a part of the latter half of Theorem 1. Let $S$ be an $\mathfrak{N}$-semigroup and $G$ be the quotient group of $S$, i.e. the smallest group into which $S$ can be embedded. We may assume $S \subset G$. Let $a \in S$. The element $a$ is of infinite order in $G$. Let $A$ be the infinite cyclic group generated by $a$. Let $G_{a}=G / A . \quad G_{a}$ is called the structure group of $S$ with respect to $a$. $G$ is the disjoint union of the congruence classes of $G$ modulo $A$.

[^0]$$
G=\bigcup_{\varepsilon \in \sigma_{a}} A_{\xi}
$$
where $A_{\xi}$ is the class corresponding to $\xi \in G_{a}$ and in particular $A_{s}=A$. we will prove
\[

$$
\begin{equation*}
S \cap A_{\xi} \neq \emptyset \quad \text { for all } \xi \in G_{a} . \tag{5}
\end{equation*}
$$

\]

Let $x \in A_{\varepsilon}$. Recalling the definition of the quotient group, $x=b c^{-1}$ for some $b, c \in S$, or $x c=b$. Since $S$ is archimedean, $c d=a^{m}$ for some $d \in S$ and some positive integer $m$. Then $x c=b$ implies $x a^{m}=b d$, that is, $x a^{m} \in S \cap A_{\xi}$. Let $S_{\xi}=S \cap A_{\xi}$ for $\xi \in G_{a}$. In particular $S_{\varepsilon}=S \cap A_{\varepsilon}$ $=\left\{a^{i}: i=1,2,3, \cdots\right\}$. Then $S=\bigcup_{\varepsilon \in \mathcal{G}_{a}} S_{\xi}$, and $S$ is homomorphic onto $G_{a}$ under the restriction of the natural mapping, $G \rightarrow G_{a}$, to $S$. Let $x_{\xi} \in A_{\xi}$ and let $\left\{x_{\xi}: \xi \in G_{a}\right\}$ be a complete representative system of $G$ modulo $A$. We will prove there is an integer $\delta(\xi)$ such that for each $\xi$,
if $\delta(\xi) \leq m, x_{\xi} a^{m} \in S$ but if $m<\delta(\xi), x_{\xi} a^{m} \notin S$.
It is obvious that $x_{\xi} a^{i} \in S_{\xi}$ implies $x_{\xi} a^{j} \in S_{\xi}$ for all $j \geq i$. Since certainly $S_{\xi} \neq \emptyset$ by (5), it is sufficient to show $S_{\xi} \neq\left\{x_{\xi} a^{i}: i=0, \pm 1, \pm 2, \cdots\right\}$. Suppose the contrary. Then $x_{\xi} \in S_{\xi}$. By archimedeaness $y x_{\xi}=a^{k}$ for some $y \in S$ and some $k>0$. Then $y x_{\xi} a^{i}=a^{k+i} \in S$ for all integers $i$; hence $A \subset S$. This is a contradiction to $S_{6}=\left\{a^{i}: i \geq 1\right\}$. Let $p_{\xi}=a^{\delta(\xi)} x_{\xi}$. $p_{\xi}$ cannot be divisible by $a$, in $S . \quad S_{\xi}$ contains $p_{\xi}$; in particular $p_{s}=a$. $p_{\xi}$ is called a prime with respect to $a$. Therefore for any element $x$ of $S$ there is $m \geq 0$ and $p_{\xi}$ such that $x=a^{m} p_{\xi}$ where $m, p_{\xi}$ are unique and if $x$ itself is a prime, $m=0$. For the remaining part the same argument as in the original paper is effective.
 group $G$ of $S$ is the abelian extension of the additive group $Z$ of all integers by the abelian group $K$ with respect to the factor system $c(\alpha, \beta)^{1)}$ defined by

$$
c(\alpha, \beta)=I(\alpha, \beta)-1
$$

Proof. Let $G=\{((x, \alpha)): x \in Z, \alpha \in K\}$ in which

$$
((x, \alpha))((y, \beta))=((x+y+c(\alpha, \beta), \alpha \beta)), \quad c(\alpha, \beta)=I(\alpha, \beta)-1
$$

and

$$
((x, \alpha))^{-1}=\left(\left(-x-c\left(\alpha, \alpha^{-1}\right), \alpha^{-1}\right)\right)
$$

$G$ is the extension of $A=\{((x, \varepsilon)) ; x \in Z\}$ by $K$. Now let $S^{\prime}=\{((n, \alpha))$; $\alpha \in K, n=1,2, \cdots\}$. Then $S \cong S^{\prime}$ by the $\operatorname{map} f:(n, \alpha) \rightarrow((n+1, \alpha))$. Next we will prove $G$ is generated by $S^{\prime}$ in the sense of groups:

$$
((0, \alpha))=((n, \alpha))((n, \varepsilon))^{-1}
$$

and if $x>0$,

$$
((-x, \alpha))=((n, \alpha))((n+x, \varepsilon))^{-1}
$$

The element $(0, \varepsilon)$ of $S$ is mapped to $((1, \varepsilon))$ of $S^{\prime}$. It is easy to see that the structure group of $S^{\prime}$ with respect to $((1, \varepsilon))$ is isomorphic to $K$.

1) See [2]. $c$ satisfies $c(\alpha, \beta)=c(\beta, \alpha), c(\alpha, \beta)+c(\alpha \beta, \gamma)=c(\alpha, \beta \gamma)+c(\beta, \gamma), c(\varepsilon, \varepsilon)=0$ ( $\varepsilon$ identity).
§3. Maximal $\mathfrak{N}$-subsemigroup. Let $G$ be an abelian non-torsion group, $S$ be an $\mathfrak{N}$-subsemigroup of $G$ and $A$ be an infinite cyclic subgroup [ $\alpha$ ] of $G$ generated by an element $a$ of $S$.

Lemma 3. The following are equivalent:
(6) $G$ is the quotient group of $S$.
(7) $G=A \cdot S$.
(8) $S$ intersects each congruence class of $G$ modulo $A$.

Proof. (8) immediately follows from (6) as a consequence of (5) in § 2. (7) $\rightarrow(6),(8) \rightarrow(7)$ are obvious.

Theorem 4. Let $G$ be an abelian group which is not torsion. Let $a$ be an element of infinite order of $G$. There exists a (maximal) $\mathfrak{R}$-subsemigroup $S$ containing a such that $G$ is the quotient group of $S$.

Proof. The operation in $G$ and $S$ will be denoted by +. Let $D$ be an abelian divisible group into which $G$ can be embedded. According to the theory of abelian groups, $D$ is the direct sum (i.e. the restricted direct product) : [See, for example, 2].

$$
D=\sum_{\lambda \in A} R_{\lambda} \oplus \sum_{\mu \in M} C_{\mu}
$$

where $R_{2}$ 's are the copies of the group of all rational numbers under addition and $C_{\mu}$ 's are the quasicyclic groups $\bigcup_{n=1}^{\infty} C\left(p_{\mu}^{n}\right), p_{\mu}$ 's being various primes. Let $\pi_{\lambda}: D \rightarrow R_{\lambda}$ and $\pi_{\mu}: D \rightarrow C_{\mu}$ be the projections of $D$ to $R_{\lambda}$ and $C_{\mu}$ respectively. Since $a$ is of infinite order there is $\lambda_{1} \in \Lambda$ such that $\pi_{\lambda_{1}}(\alpha) \neq 0$. The reason is this: Suppose $\pi_{\lambda}(\alpha)=0$ for all $\lambda \in \Lambda$. Then only a finite number of the components $\pi_{\mu}(a), \mu \in M$, are not 0 , therefore $a$ would be of finite order. We assume $\pi_{\lambda_{1}}(a)>0$.
Define

$$
S^{*}=\left\{x \in D: \pi_{\lambda_{1}}(x)>0\right\} .
$$

It is obvious that $S^{*}$ is commutative, cancellative and has no idempotent, and $a \in S^{*}$. To prove $S^{*}$ is archimedean, we see first

$$
S^{*} \cong P_{\lambda_{1}} \oplus\left(\sum_{\substack{\lambda \in A \\ \lambda \neq \lambda_{1}}} R_{\lambda} \oplus \sum_{\mu \in M} C_{\mu}\right)
$$

where $a \in P_{\lambda_{1}}$ and $P_{\lambda_{1}}$ is the semigroup of all positive rational numbers under addition. $P_{\lambda_{1}}$ is archimedean, and the second factor (i.e. the sum of all factors within the parentheses) is a group, hence archimedean; therefore it is easy to show that $S^{*}$ is archimedean. Thus it has been proved that $S^{*}$ is an $\mathfrak{R}$-semigroup containing $a$. We will prove $D=A+S^{*}$. Let $x \in D$. Choose a positive integer $n$ such that $n \pi_{\lambda_{1}}(a)+\pi_{\lambda_{1}}(x)>0$. Then $n \cdot a+x \in S^{*}$, hence $D \subseteq A+S^{*}$. The other direction is obvious. Next let $S=G \cap S^{*}$. $S$ will be one of $\mathfrak{N}$-semigroups which are claimed. Clearly $S$ contains $\alpha$ and $S$ is commutative, cancellative and has no idempotent. Since $S^{*}$ intersects all the congruence classes of $D$ modulo $A$ (by Lemma 3 ), $S^{*}$, hence $S$ does all the congruence classes of $G$ modulo $A$, that is, $G=A+S$. It remains to show
that $S$ is archimedean. Let $x, y \in S$. Since $S^{*}$ is archimedean there are a positive integer $m$ and an element $z \in S^{*}$ such that $m \cdot x=y+z$. On the other hand since $x, y \in G, z \in G$. Consequently $z \in S$. It goes without saying that $G$ is the quotient group of $S$ by Lemma 3. To prove the existence of a maximal one, use Zorn's lemma: We can easily prove that if $S_{\xi}, \xi \in \Xi$, are $\mathfrak{R}$-semigroups containing $a$ as above and if $S_{\xi} \subset S_{\eta}$ for $\xi<\eta$, then $\bigcup_{\xi \in \mathcal{B}} S_{\xi}$ is also such one.
§4. Application to abelian group theory.
Theorem 5. Let $K$ be an abelian group and $A$ be the group of all integers under addition. If $G$ is an abelian extension of $A$ by $K$ with respect to $a$ factor system $f(\alpha, \beta), K \times K \rightarrow A$, then there exists a factor system $g(\alpha, \beta)$ such that
(9) $g(\alpha, \beta) \geqq 0$
(10) $g(\alpha, \beta)$ is equivalent ${ }^{2)}$ to $f(\alpha, \beta)$.

Proof. By the assumption, let $G=\{((m, \alpha)): \alpha \in K, m=0, \pm 1$, $\pm 2, \cdots\}$ in which
(11) $\quad((m, \alpha))((n, \beta))=((m+n+f(\alpha, \beta), \alpha \beta))$.

Let $\varepsilon$ be the identity element of $K$. By Theorem 4 there is an $\mathfrak{N}$ subsemigroup $S$ containing ( $(1, \varepsilon)$ ) such that $G$ is the quotient group of $S$. Recalling the proof in $\S 1$, for each $\alpha \in K$ there is an integer $\delta(\alpha)$, in particular $\delta(\varepsilon)=1$, such that $((m, \alpha)) \in S$ for all $m \geqq \delta(\alpha)$. Hence

$$
\begin{equation*}
S=\{((m, \alpha)): m \geq \delta(\alpha), \alpha \in K\} . \tag{12}
\end{equation*}
$$

Since $S$ is closed with respect to the group operation,

$$
m+n+f(\alpha, \beta) \geqq \delta(\alpha \beta)
$$

holds for all $m \geqq \delta(\alpha)$ and all $n \geqq \delta(\beta)$. This is equivalent to

$$
\delta(\alpha)+\delta(\beta)+f(\alpha, \beta) \geq \delta(\alpha \beta)
$$

Let $g(\alpha, \beta)=f(\alpha, \beta)+\delta(\alpha)+\delta(\beta)-\delta(\alpha \beta)$. Then $g(\alpha, \beta)$ is a factor system which is equivalent to $f(\alpha, \beta)$ and

$$
g(\alpha, \beta) \geqq 0
$$

Problem. Can Theorem 5 be directly proved without using Theorem 4? Can Theorem 5 be generalized to the case where $A$ is an ordered group?

Addendum. Let $G$ be a non-torsion abelian group, that is, the abelian extension of the additive group $A$ of all integers by an abelian group $K$ with respect to a factor system $f$. If $\delta$ is a map, $K \rightarrow A$, satisfying
(i) $\delta(\varepsilon)=1 \quad \varepsilon$ being the identity of $K$,
(ii) $f(\alpha, \beta)+\delta(\alpha)+\delta(\beta)-\delta(\alpha \beta) \geqq 0 \quad$ for all $\alpha, \beta \in K$,
2) See [2]. $g(\alpha, \beta)$ is said to be equivalent to $f(\alpha, \beta)$ if there is $\varphi: K \rightarrow A$ such that $g(\alpha, \beta)=f(\alpha, \beta)+\varphi(\alpha)+\varphi(\beta)-\varphi(\alpha \beta)$.
(iii) for every $\alpha \in K$ there is a positive integer $m$ such that $f\left(\alpha, \alpha^{m}\right)+\delta(\alpha)+\delta\left(\alpha^{m}\right)-\delta\left(\alpha^{m+1}\right)>0$, and if $S$ is defined by (12) with (11), then $S$ is an $\Re$-semigroup. Every $\mathfrak{N}$-semigroup containing ( $(1, \varepsilon)$ ) whose quotient group is $G$ can be obtained in this manner.

## References

[1] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. I, Math. Surveys, No. 7. Amer. Math. Soc., Providence, R. I. (1961).
[2] A. G. Kurosh: The Theory of Groups (English translation), Vols. I and II. Chelsea Publ. Co., New York (1960).
[3] T. Tamura: Commutative nonpotent archimedean semigroups with cancellation law. I. Jour. Gakugei, Tokushima Univ., 8, 5-11 (1957).


[^0]:    *) The research for this paper was supported in part by NSF, GP-11964.

