100. On a Ranked Vector Space

By Masae Yamaguchi
Department of Mathematics, University of Hokkaido

(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1970)

We show in this paper some relations between a ranked vector space and a linear topological space.

We suppose that a ranked vector space E satisfies the following conditions:
$\left(\mathrm{M}_{1}\right)$ Let E be a ranked vector space, a sequence, $\left\{u_{n}(x)\right\}$ any fundamental sequence of neighborhoods of an arbitrary point $x \in E$, and $v(x)$ any neighborhood of x (we denote this fact by $v(x) \in \mathfrak{B}(x)$), then there is a member $u_{m}(x)$ in $\left\{u_{n}(x)\right\}$ such that $u_{m}(x) \subset v(x)$.

Proposition 1. Let E_{1} and E_{2} be two ranked vector spaces, and suppose that E_{2} satisfies Condition $\left(\mathrm{M}_{1}\right)$. Let $f: E_{1} \rightarrow E_{2}$ be continuous at a point $x \in E_{1}$, then for every neighborhood $v\{f(x)\}$ of the point $f(x) \in E_{2}$ there is a neighborhood $u(x)$ of the point $x \in E_{1}$ such that $f\{u(x)\} \subset v\{f(x)\}$.

Proof. In order to show this, we proceed indirectly: i.e., assume that there is a neighborhood $v\{f(x)\}$ of the point $f(x)$ such that for any neighborhood $u(x)$ of x

$$
f\{u(x)\} \not \subset v\{f(x)\} .
$$

Let $\left\{u_{n}(x)\right\}$ be a fundamental sequence of neighborhoods of the point $x \in E_{1}$;i.e.,

$$
u_{0}(x) \supset u_{1}(x) \supset u_{2}(x) \supset \cdots \supset u_{n}(x) \supset \cdots
$$

and there is a sequence $\left\{\alpha_{n}\right\}$ of non-negative integers such that

$$
\alpha_{0} \leqq \alpha_{1} \leqq \alpha_{2} \leqq \cdots \leqq \alpha_{n} \leqq \cdots
$$

where $\sup \left\{\alpha_{n}\right\}=\infty$, and for each $n, u_{n}(x) \in \mathfrak{B}_{\alpha_{n}}$. By assumption we have that for any n

$$
f\left\{u_{n}(x)\right\} \not \subset v\{f(x)\},
$$

i.e., for each n there is an element x_{n} in $u_{n}(x)$ such that $f\left(x_{n}\right) \notin v\{f(x)\}$. Hence, it follows from the definition of convergence that $\left\{\lim x_{n}\right\} \ni x$ and $f\left(x_{n}\right) \notin v\{f(x)\}$ for every n. Since $f: E_{1} \rightarrow E_{2}$ is continuous at x, by the definition of continuity it follows that
$\left\{\lim f\left(x_{n}\right)\right\} \ni f(x)$.
Hence there is a fundamental sequence $\left\{v_{n}\{f(x)\}\right\}$ such that

$$
\begin{gathered}
v_{0}\{f(x)\} \supset v_{1}\{f(x)\} \supset v_{2}\{f(x)\} \supset \cdots \supset v_{n}\{f(x)\} \supset \cdots \\
\beta_{0} \leqq \beta_{1} \leqq \beta_{2} \leqq \cdots \leqq \beta_{n} \leqq \cdots \\
\sup \left\{\beta_{n}\right\}=\infty \text { and for every } n \\
v_{n}\{f(x)\} \in \mathfrak{B}_{\beta n}, \quad f\left(x_{n}\right) \in v_{n}\{f(x)\} .
\end{gathered}
$$

For this $\left\{v_{n}\{f(x)\}\right\}$ it follows from Condition $\left(\mathrm{M}_{1}\right)$ that there is an integer m such that

$$
\begin{aligned}
& v_{m}\{f(x)\} \subset v\{f(x)\} . \\
\therefore \quad & f\left(x_{m}\right) \in v\{f(x)\} .
\end{aligned}
$$

This contradicts that $f\left(x_{m}\right) \notin v\{f(x)\}$.
Proposition 2. Let E be a ranked vector space satisfying Condition $\left(\mathrm{M}_{1}\right)$, then $\mathfrak{B}(0)$ has the following properties:
(1) for U and V in $\mathfrak{B}(0)$ there is a W in $\mathfrak{B}(0)$ such that $W \subset U \cap V$;
(2) for each V in $\mathfrak{B (0)}$ there is a member U of $\mathfrak{B (0) ~ s u c h ~ t h a t ~}$ $U+U \subset V$;
(3) for each U in $\mathfrak{B}(0)$ there is a member V of $\mathfrak{B}(0)$ such that $\lambda V \subset U$ for each scalar λ with $|\lambda| \leqq 1$; and
(4) for x in E and U in $\mathfrak{B}(0)$ there is a scalar $\lambda(\neq 0)$ such that $\lambda x \in U$.
Proof. (1) and (3) are obvious. (2) If E is a ranked vector space, then $E \times E$ is also a ranked vector space. Since $f: E \times E \rightarrow E$ defined by $f\{(x, y)\}=x+y$ is continuous, it follows from Proposition 1 that for every $V \in \mathfrak{B}(0)$ there is a neighborhood $U \times U \in \mathfrak{B}_{E \times E}(0,0)$ such that

$$
f\{U \times U\}=U+U \subset V
$$

(4) Since the scalar multiplication $g: K \times E \rightarrow E$ defined by $g\{(\lambda, x)\}$ $=\lambda x$ is continuous, for V in $\mathfrak{B}(0)$ there is a neighborhood $I \times u(x)$ $\in \mathfrak{B}_{k \times E}\{(0, x)\}$ such that

$$
g\{I \times u(x)\} \subset V
$$

Thus there is a $\lambda(\neq 0)$ with $\lambda x \in V$.
Proposition 2 shows that if a ranked vector space E satisfies Condition $\left(M_{1}\right), \mathfrak{V}(0)$ is a local base for a vector topology.

We now suppose that $\mathfrak{B}(0)=\left\{V ; V \in \mathfrak{B}_{n}(0), n=0,1,2, \cdots\right\}$ satisfies the following conditions:
$\left(\mathrm{K}_{1}\right) \quad \mathfrak{B}_{0}(0) \supset \mathfrak{B}_{1}(0) \supset \mathfrak{B}_{2}(0) \supset \cdots \supset \mathfrak{B}_{n}(0) \supset \cdots ;$
$\left(\mathrm{K}_{2}\right)$ for each $\mathfrak{B}_{n}(0)$ there is a member U_{n} in $\mathfrak{B}_{n}(0)$ and an integer S_{n} such that every member V of $\mathfrak{B}_{s_{n}}(0)$ is contained in U_{n}.
From (K_{2}) we can consider a sequence

$$
\mathfrak{U}=\left\{U_{n} ; n=0,1,2, \cdots\right\}
$$

and we will show some properties of \mathfrak{H}.
Proposition 3. Let E be a ranked vector space satisfying Conditions $\left(\mathrm{K}_{1}\right)$, $\left(\mathrm{K}_{2}\right)$, and $\left\{V_{n}\right\}$ a fundamental sequence of neighborhoods of zero, then for every $U \in \mathfrak{U}$ there is a member V_{m} in $\left\{V_{n}\right\}$ such that $V_{m} \subset U$.

Proof. We may consider $U=U_{\iota} \in \mathfrak{H}$. From $\left(\mathrm{K}_{2}\right)$ it follows that there is an positive integer S_{l} such that for every V in $\mathfrak{B}_{s_{l}} V \subset U_{l}$.

Since $\left\{V_{n}\right\}$ is a fundamental sequence of neighborhoods of zero,
there is a sequence $\left\{\alpha_{n}\right\}$ of non-negative integers such that $\alpha_{n} \leqq \alpha_{n+1}$, for $n=0,1,2, \cdots$, $\sup \left\{\alpha_{n}\right\}=\infty$, and $V_{n} \in \mathfrak{B}_{\alpha_{n}}$ for $n=0,1,2, \cdots$. For S_{l}, it follows using $\sup \left\{\alpha_{n}\right\}=\infty$ that there is an α_{m} in $\left\{\alpha_{n}\right\}$ such that $\alpha_{m} \geqq S_{l}$. Thus by $\left(\mathrm{K}_{1}\right),\left(\mathrm{K}_{2}\right)$ we have

$$
\begin{array}{ll}
& V_{m} \in \mathfrak{B}_{\alpha_{m}} \subset \mathfrak{B}_{s l}, \\
\therefore \quad & V_{m} \subset U_{l}=U .
\end{array}
$$

Proposition 4. Let E be a ranked vector space satisfying Conditions $\left(\mathrm{K}_{1}\right)$, $\left(\mathrm{K}_{2}\right)$ and $\left\{A_{n}\right\}$ a sequence of subsets of E such that every sequence $\left\{x_{n}\right\}$ with $x_{n} \in A_{n}(n=0,1,2, \cdots)$ converges to zero, then there is a subsequence $\left\{U_{t_{i}}\right\}$ of $\mathfrak{U}=\left\{U_{n} ; n=0,1,2, \cdots\right\}$ such that

$$
A_{i} \subset U_{t_{i}} \quad \text { for } i=0,1,2, \cdots
$$

Proof. For U_{1} in $\mathfrak{U l}$, there is an positive integer n_{1} such that $U_{1} \supset A_{n_{1}}, A_{n_{1}+1}, A_{n_{1}+2}, \cdots$ In order to show this, we proceed indirectly: i.e., assume that for any n there is an positive integer $m_{1}(>n)$ with $U_{1} \not \supset A_{m_{1}}$. Then we can select the following sequences :

$$
\begin{aligned}
& A_{m_{1}}, A_{m_{2}}, A_{m_{3}}, \cdots, A_{m_{i}}, \cdots \\
& \left(m_{1}<m_{2}<m_{3}<\cdots<m_{i}<\cdots\right) \\
& x_{i} \in A_{m_{i}}, \quad \text { and } \quad x_{i} \notin U_{1} \quad \text { for } i=1,2,3, \cdots .
\end{aligned}
$$

By assumption we have

$$
\left\{\lim x_{i}\right\} \ni 0
$$

i.e., there is a fundamental sequence $\left\{V_{i}\right\}$ such that $x_{i} \in V_{i}$ for $i=1,2,3, \cdots$.

It follows from Proposition 3 that there is an positive integer m such that $x_{m} \in U_{1}$. This contradicts that $x_{i} \notin U_{1}$ for $i=1,2,3, \cdots$.

By (K_{2}), there is an positive integer S_{12} for U_{1} such that each $V \in \mathfrak{B}_{s_{12}}$ is contained in U_{1}, and hence $U_{s_{12}} \subset U_{1}$. Thus we can select a sequence $\left\{U_{1 i}\right\}$ such that

$$
\begin{equation*}
U_{1} \supset U_{S_{12}} \supset U_{S_{13}} \supset \cdots \supset U_{S_{1 i}} \supset \cdots \tag{2}
\end{equation*}
$$

For $U_{S_{12}}$ we can show as before there is an positive integer $n_{2}\left(>n_{1}\right)$ such that

$$
U_{S_{12}} \supset A_{n_{2}}, A_{n_{2}+1}, A_{n_{2}+2}, \cdots, A_{n_{2}+i}, \cdots
$$

Continuing this process we can select a subsequence $\left\{U_{t_{i}}\right\}$ of $\mathfrak{H}=\left\{U_{n}, n\right.$ $=0,1,2, \cdots\}$ such that

$$
A_{i} \subset U_{t_{i}} \quad \text { for } i=1,2,3, \cdots
$$

Proposition 5. Let E be a ranked vector space satisfying Conditions $\left(\mathrm{K}_{1}\right),\left(\mathrm{K}_{2}\right)$, then $\mathfrak{U}=\left\{U_{n} ; n=0,1,2, \cdots\right\}$ has the following properties:
(i) for $U, V \in \mathfrak{H}$ there is a W in \mathfrak{H} such that $W \subset U \cap V$;
(ii) for every $V \in \mathfrak{H}$ there is a member U in \mathfrak{H} such that $U+U \subset V$;
(iii) for every $U \in \mathfrak{H}$ there is a member V in \mathfrak{H} such that $\lambda V \subset U$ for each scalar λ with $|\lambda| \leqq 1$; and
(iv) for every $x \in E$ and for every $U \in \mathfrak{H}$ there is a scalar $\lambda(\lambda \neq 0)$ such that $\lambda x \in U$.
Proof. (i) Let $U=U_{l}$ and $V=U_{m}$, then there are positive numbers S_{l} and S_{m} such that $V^{\prime} \subset U_{l}$ for every $V^{\prime} \in \mathfrak{B}_{S_{l}}$ and $V^{\prime \prime} \subset U_{m}$ for every $V^{\prime \prime} \in \mathfrak{B}_{S_{m}}$. Let $n=\max \left(S_{l}, S_{m}\right)$, then

$$
U_{n} \subset U \cap V
$$

(ii) Let V be an arbitrary element of $\mathfrak{U}=\left\{U_{n} ; n=0,1,2, \cdots\right\}$, then V is denoted by $V=U_{l}$. From (2) there exists a fundamental sequence of neighborhoods of zero such that

$$
U_{1} \supset U_{S_{12}} \supset U_{S_{13}} \supset \cdots \supset U_{S_{1 i}} \supset \cdots
$$

Thus we have

$$
U_{1}+U_{1} \supset U_{S_{12}}+U_{S_{12}} \supset U_{S_{13}}+U_{S_{13}} \supset \cdots \supset U_{S_{1 i}}+U_{S_{1 i}} \supset \cdots
$$

Let $\left\{y_{i}\right\}$ be any sequence such that

$$
y_{i} \in U_{S_{1 i}}+U_{S_{1 i}} \quad(i=1,2,3, \cdots) \quad\left(S_{11}=1\right)
$$

then

$$
y_{i}=x_{i}+x_{i}^{\prime}
$$

where $x_{i}, x_{i}^{\prime} \in U_{S_{1 i}}$ for $i=1,2,3, \ldots$. It follows from $x_{i}, x_{i}^{\prime} \in U_{S_{1 i}}(i$ $=1,2,3, \cdots$) that

$$
\left\{\lim x_{n}\right\} \ni 0 \text { and }\left\{\lim x_{n}^{\prime}\right\} \ni 0
$$

Since E is a ranked vector space,

$$
\begin{array}{r}
\left\{\lim \left(x_{i}+x_{i}^{\prime}\right)\right\} \ni 0 \\
\therefore \quad\left\{\lim y_{i}\right\} \ni 0
\end{array}
$$

By Proposition 4 we have that there is a subsequence $\left\{W_{i}\right\}$ of \mathfrak{U} such that

$$
U_{S_{1 i}}+U_{S_{1 i}} \subset W_{i} \quad i=1,2,3, \cdots
$$

Hence, using Proposition 3 for $V=U_{l}$ there is a member $U_{S_{1 m}}$ of (2) such that

$$
U_{S_{1 m}}+U_{S_{1 m}} \subset V=U_{l}
$$

(iii) This is clear.
(iv) Since E is a ranked vector space, it follows that for every $x \in E$ and for every sequence $\left\{\lambda_{n}\right\}$ with $\lim _{n \rightarrow \infty} \lambda_{n}=0\left(\lambda_{n} \neq 0, n=1,2,3, \cdots\right)$ there is a fundamental sequence $\left\{V_{n}\right\}$ of neighborhoods of zero such that

$$
\lambda_{n} x \in V_{n} \quad \text { for } n=1,2,3, \cdots
$$

Let U be any element of $\mathfrak{U}=\left\{U_{n} ; n=0,1,2, \cdots\right\}$, then there is an integer m such that

$$
\begin{aligned}
& V_{m} \subset U \\
& \lambda_{m} x \in U
\end{aligned}
$$

If E is a ranked vector space satisfying Conditions $\left(\mathrm{K}_{1}\right)$, $\left(\mathrm{K}_{2}\right)$, we can introduce in E a vector topology which has \mathfrak{H} as a local base, then E is a linear topological space and it has a countable local base, and hence it is pseudometrizable.

Example. Let $c(-\infty, \infty)$ be a set of all continuous complex functions defined on $(-\infty, \infty)$, then clearly it is a linear space. We define a sequence $\left\{\|f\|_{n}\right\}$ of semi-norms as follows:

$$
\|f\|_{n}=\sup \{|f(x)|:|x| \leqq n\}
$$

for $n=1,2,3, \cdots$.
We now define the neighborhhood $v(n ; 0)$ in the following way:

$$
v(n ; 0)=\left\{f ;\|f\|_{n}<\frac{1}{n}\right\}
$$

for $n=1,2,3, \cdots$ and $v(0,0)=c(-\infty, \infty)$.
Then $v(n ; 0)$ has the following properties:
(1) each $v(n ; 0)$ contains zero, and it is circled;
(2) if $m \geqq n$, then $v(m ; 0) \subset v(n ; 0)$;
(3) conversely, if $v(m ; 0) \subset v(n ; 0)$, then $m \geqq n$; and
(4) for any $v(m ; 0), v(n ; 0)$ in $\{v(n ; 0)\}$ there is a member $v(l ; 0)$ in $\{v(n ; 0)\}$ such that $v(l ; 0) \subset v(m ; 0) \cap v(n ; 0)$.
Let

$$
\begin{array}{ll}
\mathfrak{S}_{0}(0)=\{v(0 ; 0), & v(1,0), v(2 ; 0), \cdots, v(n ; 0), \cdots\} \\
\mathfrak{V}_{1}(0)=\left\{\begin{aligned}
& v(1,0), v(2 ; 0), \cdots, v(n ; 0), \cdots\} \\
\mathfrak{S}_{i}(0)=\{ & v \cdots \cdots
\end{aligned}\right. \\
& v(i ; 0), \cdots, v(n ; 0), \cdots\}
\end{array}
$$

Then $c(-\infty, \infty)$ is a ranked vector space and it satisfies Conditions $\left(\mathrm{K}_{1}\right),\left(\mathrm{K}_{2}\right)$.

References

[1] K. Kunugi: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42, 318-322, 549-554 (1966).
[2] M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43, 584-589 (1967).
[3] -: On ranked spaces and linearity. II. Proc. Japan Acad., 45, 238-242 (1969).

