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92. On Cubic Galois Extensions o Q(/--)

By Hideo WADA
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIR)x, M. $. A., May 12, 1970)

Let k be the field Q(/-3)and let K be the field k(/])for some
element A of k. In this paper, we shall determine in Theorem 1 a
basis of integers of K and determine in Theorem 2 the genus field of
K with respect to /c and determine in Theorem 3 whether the class
number of K is a multiple of 3 or not

1. A basis of integers.
Let O be the ring of integers of/c-Q(/-3). Any cubic galois

extension K over /c can be written as /c(/]), where A e O, A #= 1, is
without cubic factors and, without loss of generality, we may assume
that A--fg2, f and g being integers of k having no square factors and

f 1, g 1 (mod /- 3). Put A* f2g, t? /, t?* t?2/g-- -*and O-the ring of integers of K. By the relation t?2=gO*, every
element of K can be expressed in the form c + fit? + yO*, (c,/, Y e k).
Let w-c+ fit9 + yt?* be an element of O and w’, w" be its conjugates
over k. It can be easily veryfied that"
(1) w+w’+w"=3o:,
(2) 09og’+w’w"+w"w=3a2-3flyfg,
( 3 ) ww’w"=a3+ fl3A + yA*-3aflyfg.
As o9 is an integer, 3c and

(3/)A (32,)A* (9/’fg),
(3/)3A + (3T)A* 27(a + t3A + ’3A*--3atyfg)--(3a)+ 3.3a. 9flyfg

are integers of k. Since A and A* contain no cubic factors, 3/3 and

3" are integers of k. Put 3ct=a, 3/3=b and 3’=c. Then w=(a+ bt?
+ cO*)/3, (a, b, c e 0). From (2) and (3), these coefficients must
satisfy the congruences"

( 4 az- bcfg =_ 0 (mod 3),
5 ) a + bA + c3A* 3abcfg =_ 0 (mod 27).
We shall next determine a basis of O as O-module. When

wx=l, wz=(a2+b.t?)/3 and w=(a+b?+cfl*)/3 are elements of OK
such that:

min {Ibl O: (a+bt?)/3, O a, b, b:C=O}= lb.l,
min {I cl OK (a+bO +cO*)/3, O a, b, c, c::O}= c3l,

then w, w., w is a basis of Or as O-module, since O is Euclidean.
(a+ b0)/3 is an element of Or if and only if
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a--0 (mod3), a+bA=_O (mod27).
From these congruences, a and b are multiples of v/--3. Put
a=v/--3x, b=v/-3y. Thenwe have x+yA=_O (mod 3 v/-3). From
this congruences, we may take w.= (1-- t?)//3, when A =_ l(mod 3 v/- 3)
and co2 t?, when A 1 (mod 3 v 3).

co=(a+b8+cS*)/3 is an element of Og if and only if a, b and c
satisfy the congruences (4) and (5). If c is not a multiple of 3, but c

is a multiple of /-3, then from (4) and (5), a and b are also multi-
ples of /--3. Put a=v/--3x, b--v/-3y and c=v/-3z. Then w is

(x+yS+zS*)/v/--3 and we may assume z=l. In this case, w is an
integer if and only if

x +yA+ A* 3xyfg --_ 0 (mod 3 v 3).
From this congruence co is an integer if and only if f=_g--1

(rood v/--3) and f_-- g (mod 3). In this case, (1 + t? + 0")/v/--3 is an
integer.

If c is not a multiple of v/--3 and co=(a+bO + cO*)/3 is an integer,

then v/--3co is also an integer. From above argument we have

f--g--1 (mod v/--3), f=_g (mod 3) and (l+8+t?*)/v/--3 is an integer.
So we may assume c= 1. The congruences (4) and (5) are in this case
as follows:
(6) a--bfg--O (mod 3),
( 7 ) a / bA +A* 3abfg-- 0 (mod 27).
Since A=_A*=_I (mod v/-3), we have a--b=_1 (mod /-3). Put
a=/--3k+l, b=v/-3/+l, f=v/--3m+ 1 and g=f+3s. Then

( 8 ) a- bfg-= v/- 3(m-- k- l) (mod 3).
From (6) and (8) we may assume l-m-k. It can be easily verified
that

a+ bfg +f2g-3abfg--9 (1 + v/3m)s (mod 27).

Therefore (7) can be solved if and only if f=_ g (mod 3 v/3).
Thus we have proved the following theorem.

Theorem 1. Let k=Q(v/-3), K=k(/) where A is an integer

of k, cubefree and A=fg2, f-I (mod /--3), g-I (mod /--3).
Put 0=/-, O*=O/g. Then a basis of integers of K as O,-module
where O, is the ring of integers of k is given as follows:

{1, , t?*}, when fg (rood 3),

{1,?,(1+t?+/?*)//-3}, when f--g(mod3), fg(mod3/-3),

{1, (1-)//-3, (f+O+O*)/3}, when f=_g (rood 3 /-3).
The ideal (4--3) is unramified in K if and only if

A=_I (rood 3 /-3).
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2. The genus field.
Among abelian extensions over k, let L be the maximal unramified

extension over K. It can be easily proved that the galois group
G(L/k) is of (3, 3,..., 3) type (cf. [3]).

As (f(3 /-3)-18 and there is the primitive sixth root of unity in

0, any prime ideal p of k which is not (/-3), can be expressed as

(p), where p is an element of O and p--1 or 2 or 4 (mod 3 /-3).
Therefore A can be expressed as follows:

t/n+l

where e--1 or 2 (l_<i=<s)
p _= 1 (rood 3 /- 3), q _-- 2 or 4 (mod 3 /- 3)

r--p(/-3), p--(l+ /--3)/2, l, m e Z.
Then we get easily the following theorem.

Theorem 2. Let L, Pi, qi and r be as above. Then L is express-
ed as follows:

L-K(/11,..., /-, /qn/lq?, /qn/lqs)
where m--1 or 2 such that

qn /lq +-- 1 (rood 3 /-- 3).
Let t be the number o/ramified prime ideals in K/k. Then the degree

of L--K is 3t-, when n=s, and 3t-2, when n<s.
It is easy to see that the class number of K is not a multiple of 3

if’and only if L=K. So we have next theorem.
Theorem 3. The class number of K is not a multiple of 3 if and

only if A has one of the following forms (p, q, r are as above):
1) A--p1. 2) A--qq2, q=_2, q2=_4 (rood 3 /--3).
3) A-qq, ql--q.=_2 or 4 (mod 3 /-3). 4) A-r. 5) A-qlr.

Remark. When A is a natural number, K contains the purely
cubic field F=Q(/). Prof. T. Honda determined whether the class
number o F is a multiple o 3 or not (cf. [4]). He also proved that
the class number of K is no a multiple of 3 if and only if the class
number of F is no a multiple of 3 (cf. [4]). If we use this fact and
Theorem 3, we can easily get his result.

References

[1] R. Dedekind: Ober die Anzahl der Idealklassen in reinen kubischen Zahl-
k(irpern. J. Reine Angew. Math., 121, 40-123 (1900).

[2 B.N. Delone and D. K. Faddeev: The Theory of Irrationalities of the Third
Degree. Moskva (1940).

[3] H. Hasse: Zur Geschlechtertheorie in quadratischen Zahlkbrpern. J. Math.
Soc. Japan, 3, 45-51 (1951).

4 H. Honda: Pure cubic fields whose class numbers are multiples of 3 (to
appear in J. of Number Theory).



400 H. WADA [Vol. 46,

[5] J. Martinet et J. J. Payan: Sur les bases d’entiers des extensions galoisi-
ennes et non abeliennes de degr 6 des rationnels. J. Reine Angew. Math.,
229, 29-33 (1968).


