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122. On Quasi.Souslin Space and Closed Graph Theorem

By Michiko NAKAMURA

(Comm. by Kinjir5 KUNUGI, M. . A., June 12, 1970)

L. Schwartz defined Souslin space as any continuous image of a
complete separable metric space and a generalized closed graph theo-
rem is obtained in [1] and [2] for this class of spaces. Here we con-
sider a slightly wider class of topological spaces, namely quasi-Souslin
spaces, and prove a closed graph theorem extending the method in [2].

A filter is said to be S-filter if has a countable basis {Sn} such
that ( S=.

A Housdorff topological space E is called a quasi-Souslin space,
if there exists a sequence of S-filters Cn (n= 1, 2,...) such that every
ultrafilter with : (n= 1, 2,. .) converges in E. In the sequel
Cn are called defining filters for E.

LetAbeasubsetoasetEand afilterin E. We say thatA
is disjoint from i there is B in such that A B--. If A is not
disjoint rom , we denote the filter {A BIB e } in A by . We
identify the filter in A with the filter in E if A e . Let (? be a
mapping rom a set E into a set F and , filters in E, F respectively.

(), the image of by , is defined as the filter generated by

{(A)IA e }. When (E) is not disjoint from , -1(), the inverse
image of by is defined as the filter generated by {(?-I(A) A e }.

A subset A of topological space E is said to be everywhere second
category in E, if any non-void intersection U ( A with an open set U
in E is second category. As well known, if A is second category, the
set O(A) o all the elemets x in E or which A V is second category
or every neighbourhood V of x is not empty and O(A) A is every-
where second category in E.

First we show that the class of quasi-Souslin spaces, as in the
case of Souslin spaces, is closed by the ollowing.operations"

(1) The image E=(F) of a quasi-Souslin space F by a con-

tinuous mapping is quasi-Souslin.
(2) The closed subspace E of a quasi-Souslin space F is quasi-

Souslin.
(3) The product space E= [] En of quasi-Souslin spaces En

(n= 1, 2, .) is quasi-Souslin.
( 4 ) The inductive limit E of quasi-Souslin spaces E (n= 1, 2,

is quasi-Souslin.
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Proof of (1)o Suppose F is quasi-Souslin with respect to S-filters
(n=l, 2,...). Let D be a subset of F or which (D)=(F) and

is one-to-one on D. For each n such that D is not disjoint rom, () is an S-filter in D and {()} is an S-filter in E. Let be
any ultrafilter in E such that :{(On)} or every n or which ()
exists, then {(?-()}(n). or every n. Therefore, if we choose an
ultrafilter/2 in F such that {-()}t9 then (9)= and t9 or
every n (n= l, 2, ). Since F is quasi-Souslin, there exists x in F
such that /2 converges to x and hence converges to (x) in E by
virtue of the continuity of . Thus we have proved that E is quasi-
Souslin with defining filters {()}.

Proof of (2). Let n (n=l,2,...) be defining S-filters or F.
For each n such that E is not disjoint from , (n) is an S-filter in E.
Then E is a quasi-Souslin space with respect to defining filters (n).

Proof of (:). For each n, let Cn, (m=1,2,...) be defining
S-filters or E and Pn projections from E to E. Then E is a quasi-
Souslin space with defining filters p;l(On,) (n, m----- 1, 2, .).

Proof of (4). Suppose E= En with the including mappings f
o. En into E. For each n, let Cn, (m= 1, 2,...) be defining filters or
E and the filter generated by ENE (n=1,2,...). Then E is
quasi-Souslin with defining filters"

and f(n,,) (n, m-- 1, 2, ).
The act that every Souslin space is quasi-Souslin space is a con-

sequence of (1) and the act that every complete separable metric space
is quasi-Souslin space. Let us prove this. Let E be a complete sepa-
rable metric space, d the distance function in E, and D a dense counta-
ble subset in E. Put U(x )-- {y e E Id(x, y) e}. Let be the filter

generated by the complements of all the finite union of U x;- x

being in D. Then is S-filter in E and we show that E is a quasi-
Souslin space with defining filters (n= 1, ., .). Let F be an ultra-
filter in E such that : tor every , then there exists a sequence x

( 1) Then r is a Cauehy filterof elements in D such that r U z
in E and, since E is complete, F converges.

Remark. Every compact Housdorff topological space and more
generally every Housdorff topological space which is covered by counta-
ble number of compact subsets is quasi-Souslin. Reflexive non-
separable Banaeh space with weak topology is an example of quasi-
Souslin spaces which are not Souslin.

To prove the closed graph theorem for quasi-Souslin space, we
make use of the following two Lemmas.
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Lemma 1. Let q be a mapping from a topological space X into
a regular topological space Y. Let A (i--l, 2,...) be a dense subset
of X such that ADA+I for each i (i--1,2, ...). Let x be the filter
generated by all A (i--1, 2,...) together with all the neighbourhoods
of x in X. Then if q(x) converges to q(x) for every x X, then p is
continuous.

Proof. Let U be a neighbourhood of xeX. Then for every
y e U, q converges to y and, by assumption, (qv) converges to (y)
so f(y) e (UA)-, and hence (U)c(U VA)-. Here (U ; A)-
denotes the closure of q(UA). By virtue of the regularity of Y,
for any neighbourhood V of p(x), there exists a closed neighbourhood
W of (x) such that VW. Since (f(qx) converges to (x), there
exists a neighbourhood U of x and i such that (f(U V A)c V. Then we
have (U)c(UA)-VW. Therefore is continuous at x.

Lemma 2. Let F be a linear topological space, and let D be a
subset of F such that FND, the complement of D in F, is first category
in F, then every linear mapping of F into a linear topological space
E which is continuous on D is continuous.

Proof. For a given neighbourhood V of 0 in E, we show that
there exists a neighbourhood U of 0 in F such that (?(U) V. Let W
be a neighbourhood of 0 in E such that W--W V. Then, for a fixed
element x D, by the continuity of on D, we can find U such that
9(D(x+U))W+(x). Let y be in U. As x+U is a neighbour-
hood o2 x and U-y is a neighbourhood of 0, (x + U) (q (x + U- y) :k: .
As FD is first category, we have {(x + U) D} {((x + U) D) y} A:.
Let z be in {(x + U) D} {((x + U) D)- y}, then z e (x + U) D and
z+y (x+ U)(qD, and hence both (z) and (z+y) are in o(x)+ W.
Therefore o(y) (z+ y) (z) e W- W, showing (U)c V.

Now we prove
Theorem. Every mapping o with graph closed from a topologi-

cal space F which is everywhere second category into a regular quasi-
Souslin space E, is continuous on a subset D such that FD is first
category.

Proof. There exists a sequence of subsets A (i=1, 2, .) of F
such that, for each i, A is everywhere second category in F, ADA+
and or every x in A there exists a neighbourhood U of x such that
UA is disjoint from o-’(). We put F=Ao, and for each i when
A, is already determined we put A+=A in case D-I(i/I) dose not
exist (i.e. f(F) is disjoint from /1) and we determine in the follow-
ing way in case (f-l(q/l) exists. Let {(V, B)}eA be a maximal family
of ordered pairs (V, B) with the following three conditions:

( 1 B, is everywhere second category in non-void open set V,.
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(2) AB and B2 is disjoint from -(/).
(3) VV,= if 2#2’.

Put A/= J B. Suppose there exists an open set W such that
2A

Wf V= for all 2 e A. As / is an S-filter in E, (?-(/) is also an
S-filter in F, and hence, F-(/I) has a countable basis {S} such that

Sn . Since W A is second category and W VI A (W A S),

C W fA Sno is second category for some no. Then W fA C and
C is disjoint from (-1(/). Putting V-O(C), and B=VC, we
obtained a pair (V,B) and the family {(V,B),(V,B)} which also
satisfies (1), (2) and (3), contradicting the maximality of {(V,
So we have proved that 3 V is dense in F, and then it is obvious that

A/ is everywhere second category.
Let D be the set of those x e F for which there exists a neighbour-

hood U of x such that U A is disjoint from q-(), and put D- D.
Then D is open and dense since DA, and hence FD is first
category.

Now we prove that (f is continuous on D. We apply Lemma 1
for , D and D f A, then it is sufficient to prove that ?() converges
to (x) for every x e D, where is defined as in the lemma. Every
ultrafilter gz(f(O), being disjoint from every , converges to an
element x in E. Since converges to x and (? is graph closed, we
have z (f(x).

Corollary. Every graph closed linear mapping from a linear
topological space of second category into a linear topological space E
which is quasi-Souslin is continuous.

Proof. By the theorem, there exists a subset D of F such that
FD is first category and is continuous on D. Then, by Lemma 2,

is countinuous.
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