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1. Introduction and Theorems.
1.1. Let a be an infinite series and (s)be the sequence o

partial sums. If the function
1 , SnX( 1 ) L(x)-

log(l--x) n
is of bounded variation on an interval (c, 1), then the series a, is
said to be absolutely summable by logarithmic method or ILI-summable
(see [1] and [2]).

Let f be an even integrable unction with period 2zr and its
Fourier series be a, cos nx. R. Mohanty and J. N. Patnaik [2] have
proved the ollowing

Theorem 1. If the function
1 : f(u)du g(t)( 2

t log(27/t) 2 sin u/2 t log(2z/t)
is integrable in the interval (0,), then the Fourier series of f is
[Ll-summable at the origin.

Our first object of this paper is to give an alternative proof of
this theorem.

1.2. Let (p) be a sequence of non-negative numbers such that

p(x)-px<c or 0<x<l.

the function

(3) P(x)- 1 psx
p(x)

is of bounded variation on an interval (c, 1) (0 c(1), then we say
that the series a is absolutely Perron summable or [P[-summable.
According as p-I or p=l/n, then IP[-summability reduces to [A[-
summability or ILI-summability, respectively.

Theorem 1 is generalized as follows"
Theorem 2. Suppose that (i) the sequence (np) is of bounded

variation and that (ii) there is an a, O( a( 1, such that
( 4 ) (1-- x)p(x) as xl.
If g(t)/tp(1--t) is integrable in the interval (0, ), then the Fourier
series of f is IPl-summable at the origin.
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From the proof of Theorem 2, we can see that the condition (i)
may be replaced by that

p’(z)=O(/,l-zl), "(z)-O(/l-zl) as z-l
where z--xet and p(z)=,pz.

If p=l[n then Theorem 2 reduces to Theorem 1.
2. Proofof Theorems.
2.1. Proof of Theorem 1
Let s be the n th partial sum o Fourier series o f at the origin,

then

( 6 ) s -:f(t) sin(n+2,Sin t/21/2) dt=(n+ 1/2):g(t)cos (n+ 1/2)tdt

where g(t).is defined by (2). By the definition (1),

L(x) x og(t) cos (n+ 1/2)tdt
log(l-x)

log(1-)
(t)

-1(1_) ( ( 1/)t)+ g(t) cos + dt
2 log nl n

=M(x)+N(x).
We shall first prove that M(x) is of bounded variation on the interval
(c, 1). Since

x cos (n+l/2)t=
n=l n=l

and
II-zel-(1- cos t)+ z sin t=(1-)+4 sin t/2,

we have

((1_
(t) gt

(1-e) log (1- z) + (1- )(1- ze)(log (1-))- dx 1 dx

+ - (-(log (1-)
Coneerning N(z),

log (1- z)
1+ (1- )(log (1-- ))

and then the otal variation of N() is
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log (l--x) [1-
dx dt; du+(l_x)(log (l_x)) ig(t)]

]l_ue

<_ Ai g(t) dt ( dx + A)]l-xet ]log (1- x)]
Thus the theorem is proved.

2.2. Proo o Theorem 2.

By (3) and (6),

P(x)- 1
2 p(x) J= (n + 1/2)Pnxn og(t) cos (n+ 1/2)tdt

() 0( (+1/) eo (+l/)t gt.

We ut ()-, for complex , then

(+1/2) cos (+ 1/)t=N e/’(ze9 + e/p(e)

where denotes the differentiation with respect to x. Hence

:, P’(x) dx <=i g(t) dt: d-( xp’(xe9 + p(xe)/2 ) dx.
p(x)

It is enough to prove that

where

q()_ (1 + e/)’(e9+e"(e9 (z’(e9 +(e)/)/’()
p(x) (p(x))

By the condition (4), we get

I I- dx A I-p(x) (1- x)p(x) tp(1- t)

p(x) (-x)p(x)

and

dx A
(i- x)’- p(i- t)’

dx < A+ A (1- x)p(x) log 1 / x tp(1-- t)

+ <
(p(x)) (1-x)(p(x))

A .Ill. dx < A<-
tp(1-- t) (1-- x)- tp(1-- t)

Combining above three inequalities, we get- A( 8 ) q(x) dx <__
tp(1- t)

dx

On the other hand, we have
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(9) P’(xeit) , nPnXn-eint-"eit J(nPn)
=I =i

l_xneint

].--xeit

+ lira (np) et
1--xet

and

(10)

eit a(ngn) ( (i- xneint)eit
.= (1--xe{)

+ lim np
(1--xet)

By positivity o p, (9) and (10), we get
p’(xet) dx <_ 1 Ap’(xet) dx <_- p(x) p(1- t) -t p(1- t)

S ,p"(xet),dx< 1 I A- p(x) p(1- t) 1- tp(1- t)
and

xp’(xet) + p(xet)/2 Ip,(x)dx <
(p(x))

Combining above three estimations, we get

Adx<_
tp(1-- t)

(11)
-t

q(x) dx <= tp(1-- t)
The inequalities (8) and (11) give the required inequality (7).
Theorem 2 is proved.

Thus
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