27. A Remark on the Approximate Spectra of Operators

By Ritsuo Nakamoto*) and Masahiro Nakamura**)

(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1972)

1. In the present note, several equivalent conditions on the approximate spectrum of an operators will be discussed in § 2. The joint approximate spectrum introduced by Bunce [5] is also discussed in § 4. In § 3, an algebraic proof of Wintner-Hildebrandt-Orland's theorem is given.
2. The equivalence of several definitions on an approximate propervalue is unified in the following theorem:

Theorem 1. For an operator T on a Hilbert space \mathfrak{F}, the following conditions are equivalent:
(i) For any $\varepsilon>0$, there is a vector $x \in \mathfrak{F}$ with $\|x\|=1$ and

$$
\begin{equation*}
\|T x-\lambda x\|<\varepsilon \tag{1}
\end{equation*}
$$

(ii) There is a sequence of operators S_{n} with $\left\|S_{n}\right\|=1$ and

$$
\begin{equation*}
\left\|(T-\lambda) S_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{2}
\end{equation*}
$$

(iii) Let $\mathfrak{B}(\mathfrak{F})$ be the algebra of all operators, then

$$
\begin{equation*}
\mathfrak{P}(\mathfrak{F})(T-\lambda) \neq \mathfrak{B}(\mathfrak{F}), \tag{3}
\end{equation*}
$$

(iv) There is no $\varepsilon>0$ such that

$$
\begin{equation*}
(T-\lambda) *(T-\lambda) \geqq \varepsilon \tag{4}
\end{equation*}
$$

Historically, (i) is the original definition of Halmos [7; p. 51], (ii) is due to Berberian [1; VII, § 3, Ex. 10], (iii) is introduced very recently by Bunce [4] and (iv) is pointed out by Berberian [2].

If λ satisfies one of the above conditions, λ will be called an approximate propervalue of T. The set $\pi(T)$ of all approximate propervalues of T is called the approximate spectrum of T.
(i) implies (ii): This is already contained in [1]. Suppose

$$
\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

for $\left\|x_{n}\right\|=1$. If $S_{n}=x_{n} \otimes x_{n}$ in the sense of Schatten [11], i.e.

$$
(y \otimes z) x=(x \mid z) y
$$

then S_{n} is a one-dimensional projection, so that

$$
\left\|S_{n}\right\|=1, \quad\left\|(T-\lambda) S_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

(ii) implies (iii): $T-\lambda$ is a right generalized divisor of zero [10; p. 27] ; hence $\mathfrak{B}(\mathfrak{F})(T-\lambda)$ consists of generalized divisors of zero which implies (iii).
(iii) implies (iv): If not,

[^0](4) ${ }^{\prime}$
$$
(T-\lambda) *(T-\lambda) \geqq \varepsilon>0 ;
$$
hence $T-\lambda$ is left-invertible, so that
(3)
$$
\mathfrak{P}(\mathfrak{S})(T-\lambda)=\mathfrak{P}(\mathfrak{F})
$$
(iv) implies (i): (4) implies that there is a projection P such that
$$
\left\|(T-\lambda)^{*}(T-\lambda) P\right\|<\varepsilon .
$$

If $x \in \operatorname{ran} P$, then

$$
\|T x-\lambda x\|^{2}=\left((T-\lambda)^{*}(T-\lambda) x \mid x\right) \leqq\left\|(T-\lambda)^{*}(T-\lambda) P x\right\|<\varepsilon
$$

as desired.
There are similar another equivalent conditions instead of (i)-(iv). For example,
(ii') There are projections P_{n} such that $\left\|(T-\lambda) P_{n}\right\| \rightarrow 0$.
Clearly(ii') is equivalent to (ii) as observed in the above. Also
(iii') If \mathfrak{A} is a unital C^{*}-algebra containing T, then

$$
\begin{equation*}
\mathfrak{A}(T-\lambda) \neq \mathfrak{A} \tag{3}
\end{equation*}
$$

(iii') is equivalent to (iii) ; since (iv) shows that the approximate spectrum of an operator is purely algebraical. The equivalence of (iii) and (iii') is already observed by Bunce [4].
3. A typical example of approximate spectra is given by the following theorem:

Theorem 2 (Wintner-Hildebrandt [8], Orland [9]). If $\lambda \in \bar{W}(T)$ and $|\lambda|=\|T\|$, then λ is an approximate propervalue, where $\bar{W}(T)$ is the closure of the numerical range

$$
\begin{equation*}
W(T)=\{(T x \mid x) \mid\|x\|=1\} \tag{5}
\end{equation*}
$$

The original proof of [8] and [9] is simple. However, an algebraic proof is given based on the following theorem:

Theorem 3 (Berberian-Orland [3]). If \mathfrak{A} is a unital C*-algebra with the state space Σ, then
(6)

$$
\bar{W}(T)=\Sigma(T)=\{\rho(T) \mid \rho \in \Sigma\}
$$

for any $T \in \mathfrak{A}$.
For the proof of Theorem 2, it is obvious that one can assume $\lambda=1$ and $\|T\|=1$. If 1 is not an approximate propervalue, then T satisfies (4) for an $\varepsilon>0$. Hence

$$
T^{*} T+1 \geqq \varepsilon+2 \operatorname{Re} T
$$

where

$$
\operatorname{Re} T=\frac{T+T^{*}}{2}
$$

By (6), there is $\rho \in \Sigma$ such as $\rho(T)=1$. Therefore

$$
2 \geqq \rho\left(T^{*} T\right)+1 \geqq \varepsilon+2>2,
$$

which is a contradiction.
Incidentally, in the remainder of this section, an alternative proof of Theorem 3 will be given, which is essentially due to Z. Takeda.

Since a state of a C^{*}-algebra acting on \mathfrak{F} is extendable to a state
of $\mathfrak{B}(\mathfrak{F})$, it is not restrictive to assume that $\mathfrak{X}=\mathfrak{B}(\mathfrak{F})$. Let Σ^{\prime} be the set of all vector states such as
(7)

$$
\rho(T)=(T x \mid x) \quad(\|x\|=1)
$$

Clearly, Σ^{\prime} satisfies
(8)

$$
W(T)=\Sigma^{\prime}(T)=\left\{\rho(T) \mid \rho \in \Sigma^{\prime}\right\} .
$$

Let $\Sigma^{\prime \prime}$ be the norm convex closure of Σ^{\prime}. Then $\Sigma^{\prime \prime}(T) \subset \bar{W}(T)$ and

$$
W(T)=\Sigma^{\prime}(T) \subset \Sigma^{\prime \prime}(T) \subset \Sigma(T) .
$$

By a theorem of Dixmier [6], it is known that Σ^{\prime} consists of all strongestly continuous states of $\mathfrak{B}(\mathfrak{S})$. Hence, to prove the theorem, it needs to show that $\Sigma^{\prime \prime}$ is weakly* dense in Σ. However, this is essentially a theorem of Takeda [12] which states that $\Sigma^{\prime \prime}$ is a basic subset of Σ. Therefore, $W(T)$ is dense in $\Sigma(T)$.
4. Bunce [5] introduced recently the notion of the joint spectrum of commuting operators T_{1}, \cdots, T_{n}. A set of n complex number $s \lambda_{1}$, \cdots, λ_{n} is a joint approximate propervalue of T_{1}, \cdots, T_{n} if
(9)

$$
\mathfrak{P}(\mathfrak{F} \mathfrak{C})\left(T_{1}-\lambda_{1}\right)+\cdots+\mathfrak{B}(\mathfrak{S})\left(T_{n}-\lambda_{n}\right) \neq \mathfrak{B}(\mathfrak{S}) .
$$

The set $\pi\left(T_{1}, \cdots, T_{n}\right)$ of all joint approximate propervalues is called the joint approximate spectrum of T_{1}, \cdots, T_{n}. He proved, among others, $\pi\left(T_{1}, \cdots, T_{n}\right)$ is a non-void compact set which satisfies
(10) $\quad \pi\left(T_{1}, \cdots, T_{n}\right) \subset \pi\left(T_{1}\right) \times \cdots \times \pi\left(T_{n}\right)$.

Since Bunce's definition corresponds to (iii) in the case of a single operator, it is natural to ask that a definition corresponding to (iv) gives the the same spectrum.

Let $\pi^{\prime}\left(T_{1}, \cdots, T_{n}\right)$ be the set of all n numbers which satisfy that there is no $\varepsilon>0$ such that
(11)

$$
\left(T_{1}-\lambda_{1}\right) *\left(T_{1}-\lambda_{1}\right)+\cdots+\left(T_{n}-\lambda_{n}\right) *\left(T_{n}-\lambda_{n}\right) \geqq \varepsilon .
$$

It is clear that π^{\prime} satisfies (10) too. Each point in the complement of $\pi^{\prime}\left(T_{1}, \cdots, T_{n}\right)$ satisfies

$$
\begin{equation*}
\sum_{i=1}^{n}\left(T_{i}-\lambda_{i}\right)^{*}\left(T_{i}-\lambda_{i}\right) \quad \text { is invertible. } \tag{11}
\end{equation*}
$$

Therefore, $\pi^{\prime}\left(T_{1}, \cdots, T_{n}\right)$ is compact.
Theorem 4. Two definitions of the joint approximate spectrum are equivalent:

$$
\begin{equation*}
\pi\left(T_{1}, \cdots, T_{n}\right)=\pi^{\prime}\left(T_{1}, \cdots, T_{n}\right) \tag{12}
\end{equation*}
$$

Instead of the equivalence of (9) and (11), the equivalence of the following two conditions will be proved:

$$
\begin{equation*}
\mathfrak{P}(\mathfrak{F})\left(T_{1}-\lambda_{1}\right)+\cdots+\mathfrak{P}(\mathfrak{S g})\left(T_{n}-\lambda_{n}\right)=\mathfrak{B}(\mathfrak{S}) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T_{1}-\lambda_{1}\right) *\left(T_{1}-\lambda_{1}\right)+\cdots+\left(T_{n}-\lambda_{n}\right) *\left(T_{n}-\lambda_{n}\right) \geqq \varepsilon>0 . \tag{14}
\end{equation*}
$$

(14) implies (13): The hypothesis implies that there is a B such as

$$
B \sum_{i=1}^{n}\left(T_{i}-\lambda_{i}\right) *\left(T_{i}-\lambda_{i}\right)=1 .
$$

Hence for every $C \in \mathfrak{B}(\mathfrak{F})$,

$$
C B \sum_{i=1}^{n}\left(T_{i}-\lambda_{i}\right) *\left(T_{i}-\lambda_{i}\right)=C,
$$

so that (13) is satisfied.
(13) implies (14): If there are B_{1}, \cdots, B_{n} such that

$$
\sum_{i=1}^{n} B_{i}\left(T_{i}-\lambda_{i}\right)=1,
$$

then for any vector x

$$
\begin{aligned}
& \|x\| \leqq \sum_{i=1}^{n}\left\|B_{i}\left(T_{i}-\lambda_{i}\right) x\right\| \leqq \sum_{i=1}^{n}\left\|B_{i}\right\|\left\|T_{i} x-\lambda_{i} x\right\| \\
& \quad \leqq m \sum_{i=1}^{n}\left\|\left(T_{i}-\lambda_{i}\right) x\right\|
\end{aligned}
$$

where

$$
m=\max \left(\left\|B_{1}\right\|, \cdots,\left\|B_{n}\right\|\right),
$$

and so

$$
\frac{\|x\|}{m} \leqq \sum_{i=1}^{n}\left\|\left(T_{i}-\lambda_{i}\right) x\right\| \cdot
$$

Therefore

$$
\begin{aligned}
\frac{\|x\|^{2}}{m} & \leqq\left[\sum_{i=1}^{n}\left\|\left(T_{i}-\lambda_{i}\right) x\right\|\right]^{2} \leqq n \sum_{i=1}^{n}\left\|\left(T_{i}-\lambda_{i}\right) x\right\|^{2} \\
& =n\left(\sum_{i=1}^{n}\left(T_{i}-\lambda_{i}\right) *\left(T_{i}-\lambda_{i}\right) x \mid x\right) .
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{n}\left(T_{i}-\lambda_{i}\right)^{*}\left(T_{i}-\lambda_{i}\right) \geqq \frac{1}{n m}>0,
$$

as desired.
The joint spectrum of elements of a commutative Banach algebra is introduced by Arens and Calderon, cf. [10; p. 150]. Bunce [5] established that the joint approximate spectrum of commuting hyponormal operators is included in the joint spectrum in the sense of ArensCalderon. However, for general operators, there is no further information.

Naturally, there is an another definition of the approximate spectrum of operators is possible. Corresponding to (ii), ($\lambda_{1}, \cdots, \lambda_{n}$) belongs to the joint approximate spectrum if there is a sequence of projections P_{n} such that

$$
\begin{equation*}
\left\|\left(T_{i}-\lambda_{i}\right) P_{k}\right\| \rightarrow 0 \quad(k \rightarrow \infty) \quad(i=1,2, \cdots, n) . \tag{15}
\end{equation*}
$$

References

[1] S. K. Berberian: Introduction to Hilbert Space. Oxford Univ. Press, New York (1961).
[2] -: Approximate proper vectors. Proc. Amer. Math. Soc., 13, 111-114 (1962).
[3] S. K. Berberian and G. H. Orland: On the closure of the numerical range of an operator. Proc. Amer. Math. Soc., 18, 499-503 (1967).
[4] J. Bunce: Characters on singly generated C*-algebras. Proc. Amer. Math. Soc., 25, 297-303 (1970).
[5] --: The joint spectrum of commuting nonnormal operators. Proc. Amer. Math. Soc., 29, 499-505 (1971).
[6] J. Dixmier: Les fonctionelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert. Ann. of Math., 51, 387-408 (1950).
[7] P. R. Halmos: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York (1951).
[8] S. Hildebrandt: Über den numerische Wertbereich eines Operators. Math. Ann., 163, 230-247 (1966).
[9] G. H. Orland: On a class of operators. Proc. Amer. Math. Soc., 15, 75-79 (1964).
[10] C. E. Rickart: General Theory of Banach Algebras. Van Nostrand, Princeton (1960).
[11] R. Schatten: A Theory of Cross Spaces. Princeton Univ. Press, Princeton (1950).
[12] Z. Takeda: On the representations of operator algebras. Proc. Japan Acad., 30, 299-304 (1954).

[^0]: *) Tennoji Senior Highschool, Osaka.
 **) Osaka Kyoiku University.

