25. Sur la restriction maximale d'un langage

Par Masami ITO Université de Kyoto-Sangyo

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1972)

Dans ce mémoire, nous définissons la restriction maximale d'un langage associé à l'espace contextuel*) et nous explorons ses structures. Nous appliquons quelques résultats obtenus à un langage d'états finis.

1. Restriction maximale d'un langage. Soit $\mathcal{M}=(B,M)$ une restriction d'un langage $\mathcal{L}=(A,L)$ telle que $d(\mathcal{M})=n$. Nous appelons \mathcal{M} une restriction maximale du langage \mathcal{L} , lorsque nous avons la condition suivante:

Pour une restriction $\mathcal{N}=(C,N)$ quelconque de \mathcal{L} telle que $d(\mathcal{N})=n$, l'ensemble N ne contient pas strictement l'ensemble M.

2. Existence de la restriction maximale d'un langage. Pour le cas où nous aurions au moins une restriction d'un langage, nous avons le théorème suivant:

Théorème 1. Soit $\mathcal{M} = (B, M)$ une restriction d'un langage $\mathcal{L} = (A, L)$. Nous avons alors une restriction maximale $\mathcal{H} = (C, N)$ de \mathcal{L} telle que $d(\mathcal{M}) = d(\mathcal{M})$ et $M \subseteq N$.

Démonstration. Considérons la famille $F = \{\mathcal{H}_{\lambda} = (D_{\lambda}, H_{\lambda}); \lambda \in \Lambda\}$ de toutes les restrictions de \mathcal{L} telles que $d(\mathcal{H}_{\lambda}) = d(\mathcal{M}), M \subseteq H_{\lambda}$ et $B \subseteq D_{\lambda} \subseteq A$ (où $\lambda \in \Lambda, \Lambda$ est un ensemble certain). Pour cette famille, nous introduisons une relation d'ordre \leq comme il suit:

- (1) $\mathcal{H}_{\lambda} \leq \mathcal{H}_{\mu}$, si $H_{\lambda} \subset H_{\mu}$.
- (2) $\mathcal{H}_{\lambda} \leq \mathcal{H}_{\mu}$, si $H_{\lambda} = H_{\mu}$ et que $D_{\lambda} \subseteq D_{\mu}$.

Soit $T=\{\mathcal{H}_{\mu}; \mu \in \Sigma, \Sigma \subseteq \Lambda\}$ une sous-famille de F étant totalement ordonnée par la relation \leq . Si nous pouvons démontrer que cette sous-famille possède au moins un majorant dans la famille F, nous avons un élément maximal dans la famille F à l'aide de théorème de Zorn et nous pouvons considérer cet élément comme un langage satisfaisant à la conclusion du théorème 1.

Posons $D = \bigcup_{\mu \in \Sigma} D_{\mu}$ et $H = \bigcup_{\mu \in \Sigma} H_{\mu}$. Considérons un langage $\mathcal{H} = (D, H)$. Il est aisé de voir que ce langage est une restriction de \mathcal{L} ayant le diamètre $d(\mathcal{M})$ et qu'il est un majorant de la sous-famille T dans la famille F vu la manière de construire ce langage.

3. E-équivalence.**) Pour une préparation d'explorer une

^{*} Quant aux notions et aux symboles que nous employons dans ce mémoire, voir M. Ito (1).

^{**} Concernant un déroulement de cette notion, voir S. Marcus (2).

structure d'une restriction maximale d'un langage, nous introduisons la notion de E-équivalence.

Soient $\mathcal{L}=(A,L)$ un langage et x,y deux éléments quelconques de A^+ . Lorsque nous avons la condition suivante, nous disons que x et y sont E-équivalents l'un et l'autre, et nous employons un symbole S(x) pour représenter la classe de E-équivalence contenant x:

Pour chaque contexte (α, β) $(\alpha, \beta \in A^*)$, nous avons $\alpha x \beta \in L$ si et seulement si nous avons $\alpha y \beta \in L$.

4. Structure d'une restriction maximale d'un langage. Pour une restriction maximale quelconque d'un langage, nous avons le théorème suivant:

Théorème 2. Soit $\mathcal{M}=(B,M)$ une restriction maximale d'un langage $\mathcal{L}=(A,L)$. Nous avons alors $M=\bigcup_{x\in M}S(x)$.

Démonstration. Posons $N = \bigcup_{x \in M} S(x)$. Il est aisé de voir que $M \subseteq N \subseteq L$. Considérons un langage $\mathcal{H} = (A, N)$. Si nous pouvons démontrer que le langage \mathcal{H} est une restriction du langage \mathcal{L} ayant le diamètre $d(\mathcal{M})$, nous pouvons avoir immédiatement M = N d'après la définition d'une restriction maximale d'un langage.

Soient x, y deux éléments quelconques de N. Démontrons que dis $(x, y)_{\mathcal{H}} = \text{dis } (x, y)_{\mathcal{L}}$. D'après $x, y \in N$, nous avons deux éléments x', y' de M tels que $x \in S(x'), y \in S(y')$.

Considérons une chaîne de x' à y' dans le langage \mathcal{M} :

$$x' = x'_0, x'_1, x'_2, \dots, x'_{g-1}, x'_g = y'$$
 (1)

En substituant x, y à x', y', nous avons une séquence d'éléments de A^+ :

$$x = x_0, x_1 = x'_1, x_2 = x'_2, \dots, x_{q-1} = x'_{q-1}, x_q = y$$
 (2)

D'après $C(x_i')_{\mathcal{M}} \cap C(x_{i+1}')_{\mathcal{M}} \subseteq C(x_i)_{\mathcal{H}} \cap C(x_{i+1})_{\mathcal{H}} (i=1,2,\cdots,q-2)$, il suffit de vérifier que $\alpha x'\beta$, $\alpha x_1'\beta \in M$ entraîne $\alpha x\beta$, $\alpha x_1\beta \in N$ et que $\gamma x_{q-1}'\delta$, $\gamma y'\delta \in M$ entraîne $\gamma x_{q-1}\delta$, $\gamma y\delta \in N$ pour que la séquence (2) soit une dhaîne de x à y dans le langage \mathcal{H} . Mais, il est facile de le constater. Car nous avons en général $\alpha x\beta \in S(\alpha x'\beta)$, pour tous les $x \in S(x')$ et α , $\beta \in A^*$. En résultat, nous avons une chaîne de x à y ayant la longueur q dans le langage \mathcal{H} . En conséquence, nous avons $\operatorname{dis}(x,y)_{\mathcal{H}} \leq \operatorname{dis}(x',y')_{\mathcal{H}}$. Etant donné $N \subseteq L$, nous avons $\operatorname{dis}(x,y)_{\mathcal{L}} \leq \operatorname{dis}(x,y)_{\mathcal{H}}$, i.e., nous avons $\operatorname{dis}(x,y)_{\mathcal{L}} \leq \operatorname{dis}(x,y)_{\mathcal{H}}$, i.e., nous avons $\operatorname{dis}(x,y)_{\mathcal{L}} \leq \operatorname{dis}(x,y)_{\mathcal{H}}$.

De la même manière, nous pouvons démontrer que $x', x_1, x_2, \cdots, x_{p-1}, y'$ est une chaîne de x' à y' dans le langage \mathcal{L} , si $x, x_1, x_2, \cdots, x_{p-1}, y$ est une chaîne de x à y dans le langage \mathcal{L} . Par conséquent, nous avons dis $(x', y')_{\mathcal{L}} \leq \operatorname{dis}(x, y)_{\mathcal{L}}$. D'après le fait que \mathcal{M} est une restriction de \mathcal{L} , nous dis $(x', y')_{\mathcal{L}} = \operatorname{dis}(x', y')_{\mathcal{H}}$. Nous avons ainsi dis $(x', y')_{\mathcal{M}} \leq \operatorname{dis}(x, y)_{\mathcal{L}}$. Par cette inégalité et l'inégalité précédente, nous avons dis $(x, y)_{\mathcal{H}} = \operatorname{dis}(x, y)_{\mathcal{L}} = \operatorname{dis}(x', y')_{\mathcal{M}}$. En utilisant cette égalité, nous pouvons facilement vérifier que $d(\mathcal{H}) = d(\mathcal{M})$.

5. Langage d'états finis. Pour appliquer les résultats obtenus à un langage plus concret, nous considérons un langage d'états finis. Nous avons un résultat célèbre dans ce genre de langage***):

Soit $\mathcal{L}=(A,L)$ un langage. \mathcal{L} est un langage d'états finis si et seulement si le nombre des classes de E-équivalence de ce langage est fini.

6. Application à un langage d'états finis. Nous allons démontrer le théorème suivant:

Théorème 3. Soit $\mathcal{M}=(A,M)$ une restriction maximale d'un langage d'états finis $\mathcal{L}=(A,L)$. Alors, \mathcal{M} est aussi un langage d'états finis.

Pour la démonstration de ce théorème, nous préparons la proposition suivante:

Proposition. Soit $\mathcal{M}=(A,M)$ une restriction maximale d'un langage $\mathcal{L}=(A,L)$. Considérons respectivement $\{S(x); x \in A^+\}$ et $\{T(x); x \in A^+\}$ comme un ensemble de classes de E-équivalence de \mathcal{L} et celui de \mathcal{M} . Nous avons alors $S(x)\subseteq T(x)$ pour chaque $x \in A^+$.

Démonstration de la proposition. Soit $y \in S(x)$. Supposons que $\alpha x \beta \in M$. Nous avons immédiatement $\alpha y \beta \in S(\alpha x \beta)$. D'après $\alpha x \beta \in M$ et de la structure de M représentée par le théorème 2, nous avons $\alpha y \beta \in M$. Supposons maintenant que $\alpha y \beta \in M$. Etant donné $y \in S(x)$, nous avons $x \in S(y)$. Nous avons ainsi $\alpha x \beta \in M$, de la même manière ci-dessus. Par conséquent, nous avons $y \in T(x)$.

Démonstration du théorème 3. D'après la proposition, nous pouvons voir immédiatement que le nombre de classes de E-équivalence du langage $\mathcal M$ n'est pas supérieur à celui du langage $\mathcal L$. En conséquence, si le nombre de classes de E-équivalence du langage $\mathcal L$ est fini, celui du langage $\mathcal M$ est évidemment fini.

Références

- M. Ito: Sur l'extension et la restriction d'un langage associé à l'espace contextuel. Proc. Japan Acad., 48, 94-97 (1972).
- [2] S. Marcus: Algebraic Linguistics; Analytical Models. Academic Press (1967).
- [3] Y. Bar-Hillel: Language and Information. Addison-Wesley (1964).

^{***)} En ce qui concerne la définition et quelques propriétés de langages d'états finis, voir Y. Bar-Hillel (3).