No. 3]

36. On Random Ergodic Theorems for a Random Quasi-semigroup of Linear Contractions

By Shigeru TSURUMI Tokyo Metropolitan University

(Comm. by Kôsaku Yosida, M. J. A., March 13, 1972)

1. The purpose of the present paper is to state a random ergodic theorem and a random local ergodic theorem for a random quasi-semigroup of linear contractions associated with a semiflow of measure preserving transformations.

2. We consider a measure space (R^+, \mathcal{M}, dt) where $R^+ = [0, \infty)$, \mathcal{M} is the σ -algebra of Lebesgue measurable subsets of R^+ and dt the Lebesgue measure on \mathcal{M} . We consider also two σ -finite measure spaces $(X, \mathcal{A}, \lambda)$ and (Y, \mathcal{B}, μ) .

Let $\{\varphi_t : t \in R^+\}$ be a semiflow of measure preserving transformations defined in such a way that

(φ .1) for every t, φ_t is a measure preserving transformation in X and φ_0 is the identity;

(φ .2) for every s, t, $\varphi_{s+t} = \varphi_s \varphi_t$;

(φ .3) $\varphi_t x$ is a measurable mapping from $R^+ \otimes X$ into X.

Let $\{T(t, x) : (t, x) \in R^+ \otimes X\}$ be a random quasi-semigroup of linear contractions on $L^1(Y)$ associated with $\{\varphi_t : t \in R^+\}$ defined in such a way that

(T.1) for every t and λ -a.a.x, T(t, x) is a linear contraction on $L^1(Y)$ and T(0, x) is the identity;

(T.2) for every s, t and λ -a.a.x, $T(s+t, x) = T(s, x)T(t, \varphi_s x)$;

(T.3) for every fixed t, T(t, x) is strongly \mathcal{A} -measurable in X;

(T.4) for λ -a.a. fixed x, T(t, x) is strongly t-continuous in \mathbb{R}^+ .

Then, given $f \in L^1(X \otimes Y)$ and given t, $f(\varphi_t x, \cdot) \in L^1(Y)$ λ -a.e. and so we can define $T(t, x) f(\varphi_t x, \cdot) \lambda$ -a.e. Moreover we can choose a function g(t, x, y) on $R^+ \otimes X \otimes Y$ satisfying that

(1) g(t, x, y) is $\mathcal{M} \otimes \mathcal{A} \otimes \mathcal{B}$ -measurable;

(2) for every t, there exists a subset N_t of X with λ -measure zero such that, for every $x \notin N_t$,

 $T(t, x)f(\varphi_t x, y) = g(t, x, y)$ μ -a.e..

The existence of such a g(t, x, y) will be shown by Lemmas 1 and 4. g(t, x, y) is called a good version of $T(t, x)f(\varphi_t x, y)$ and denoted by $[T(t, x)f(\varphi_t x, y)]$.

Now we consider two properties:

S. TSURUMI

(T.5) for every t and λ -a.a.x, T(t, x) is a positive operator on $L^{1}(Y)$; (T.6) for every t and λ -a.a.x, T(t, x) is a contraction on $L^{\infty}(Y)$ in the sense of that

$$\operatorname{ess\,sup}_{y \in Y} |T(t, x)f(y)| \leq \operatorname{ess\,sup}_{y \in Y} |f(y)|$$

for all $f \in L^1(Y) \cap L^{\infty}(Y)$.

Then we have

Theorem 1 (Random ergodic theorem). Let $\{T(t, x) : (t, x) \in R^+ \otimes X\}$ be a random quasi-semigroup of linear contractions on $L^1(Y)$ associated with $\{\varphi_t : t \in R^+\}$. Further, assume (T.6). Then, for every $f \in L^1(X \otimes Y)$, there exists a function $f^* \in L^1(X \otimes Y)$ such that

$$\lim_{s \to +\infty} \frac{1}{s} \int_0^s [T(t, x) f(\varphi_t x, y)] dt = f^*(x, y) \qquad \lambda \otimes \mu\text{-a.e.}.$$

Theorem 2 (Random local ergodic theorem). Let $\{T(t, x): (t, x) \in R^+ \otimes X\}$ be a random quasi-semigroup of linear contractions on $L^1(Y)$ associated with $\{\varphi_t: t \in R^+\}$. Further, assume (T.5) or (T.6). Then, for every $f \in L^1(X \otimes Y)$,

$$\lim_{s\to+0}\frac{1}{s}\int_0^s [T(t,x)f(\varphi_t x,y)]dt = f(x,y) \qquad \lambda \otimes \mu\text{-a.e.}.$$

3. In this section we show the existence of good versions and prove Theorems 1 and 2.

Lemma 1. Let t be arbitrarily fixed. Then, for every $f \in L^1$ $(X \otimes Y)$, there exist a function $g_t \in L^1(X \otimes Y)$ and a subset M_t of X with λ -measure zero such that, for every $x \notin M_t$,

$$T(t, x)f(\varphi_t x, y) = g_t(x, y)$$
 μ -a.e..

Such a function g_t is uniquely determined except on a set of $\lambda \otimes \mu$ measure zero. Thus a mapping S_t from $L^1(X \otimes Y)$ into itself can be defined by

$$S_t f = g_t$$
.

This can be proved on making use of (T.1) and (T.3). Refer to [6, Lemma 3.2].

Lemma 2. $\{S_t: t \in \mathbb{R}^+\}$ is a semigroup of linear contractions on $L^1(X \otimes Y)$. Moreover, if (T.5) is assumed, S_t is a positive operator on $L^1(X \otimes Y)$, and if (T.6) is assumed, S_t is a contraction on $L^{\infty}(X \otimes Y)$ in the sense of that

 $\mathop{\mathrm{ess\,sup}}_{\scriptscriptstyle (x,y)\,\in\, X\otimes Y}|(S_tf)(x,y)|\leqslant \mathop{\mathrm{ess\,sup}}_{\scriptscriptstyle (x,y)\,\in\, X\otimes Y}|f(x,y)|$

for all $f \in L^1(X \otimes Y) \cap L^{\infty}(X \otimes Y)$.

Proof. S_t is clearly linear and further, when (T.5) holds, it is clearly positive. By (T.1) it holds that, for every $f \in L^1(X \otimes Y)$,

 $\|S_t f\|_{L^1(Y)} = \|T(t, x) f(\varphi_t x, y)\|_{L^1(Y)} \leq \|f(\varphi_t x, y)\|_{L^1(Y)} \qquad \lambda\text{-a.e.},$ and so

$$||S_t f||_{L^1(X \otimes Y)} \leq ||f(\varphi_t x, y)||_{L^1(X \otimes Y)} = ||f||_{L^1(X \otimes Y)}.$$

150

Hence S_t is a contraction on $L^1(X \otimes Y)$. When (T.6) holds, we can show similarly that S_t is also a contraction on $L^{\infty}(X \otimes Y)$.

Next, we prove the semigroup property of S_i . Let $f \in L^1(X \otimes Y)$. Then, by (T.2) it holds that, in the space $L^1(Y)$,

and so

$$(S_sS_tf)(x, \cdot) = (S_{s+t}f)(x, \cdot) \qquad \lambda$$
-a.e

Hence, in the space $L^1(X \otimes Y)$,

$$\begin{split} S_s S_t f = S_{s+t} f. \\ \text{Lemma 3.} \quad S_t \text{ is strongly t-continuous in } R^+. \\ \text{Proof. Let } f \in L^1(X \otimes Y). \quad \text{Then, by (T.1),} \\ \|S_s f - S_t f\|_{L^{1}(X \otimes Y)} = \| \|S_s f - S_t f\|_{L^{1}(Y)}\|_{L^{1}(X)} \\ &= \| \|T(s, x)f(\varphi_s x, y) - T(t, x)f(\varphi_t x, y)\|_{L^{1}(Y)}\|_{L^{1}(X)} \\ &\leq \| \|T(s, x)f(\varphi_s x, y) - T(s, x)f(\varphi_t x, y)\|_{L^{1}(Y)}\|_{L^{1}(X)} \\ &+ \| \|T(s, x)f(\varphi_t x, y) - T(t, x)f(\varphi_t x, y)\|_{L^{1}(Y)}\|_{L^{1}(X)} \\ &\leq \| \|f(\varphi_s x, y) - f(\varphi_t x, y) - T(t, x)f(\varphi_t x, y)\|_{L^{1}(Y)}\|_{L^{1}(X)} \\ &\leq \| \|f(\varphi_s x, y) - f(\varphi_t x, y) - T(t, x)f(\varphi_t x, y)\|_{L^{1}(Y)}\|_{L^{1}(X)} \\ &= \|f(\varphi_s x, y) - f(\varphi_t x, y)\|_{L^{1}(X \otimes Y)} \\ &+ \| \|T(s, x)f(\varphi_t x, y) - T(t, x)f(\varphi_t x, y)\|_{L^{1}(Y)}\|_{L^{1}(X)} \end{split}$$

Now, if we define $(V_t f)(x, y) = f(\varphi_t x, y)$ for $t \in R^+$ and $f \in L^1(X \otimes Y)$, we see that $\{V_t : t \in R^+\}$ is a semigroup of linear contractions on $L^1(X \otimes Y)$ and that V_t is strongly \mathcal{M} -measurable and so strongly *t*-continuous. Hence

 $\lim \|f(\varphi_s x, y) - f(\varphi_t x, y)\|_{L^1(X \otimes Y)} = 0.$

On the other hand, by (T.4),

 $\lim_{s \to t} \|T(s, x)f(\varphi_t x, y) - T(t, x)f(\varphi_t x, y)\|_{L^1(Y)} = 0 \qquad \lambda \text{-a.e.,}$ and, by (T.1),

$$egin{aligned} \| T(s,x) f(arphi_t x,y) - T(t,x) f(arphi_t x,y) \|_{L^1(Y)} \ &\leqslant 2 \, \| f(arphi_t x,y) \|_{L^1(Y)} \in L^1(X), \end{aligned}$$

because $|| || f(\varphi_t x, y) ||_{L^1(Y)} ||_{L^1(X)} = || f ||_{L^1(X \otimes Y)}$. Hence, by Lebesgue convergence theorem,

 $\lim_{x\to \infty} \| \| T(s,x)f(\varphi_t x,y) - T(t,x)f(\varphi_t x,y) \|_{L^1(Y)} \|_{L^1(X)} = 0.$

Therefore

$$\lim_{t \to 0} \|S_s f - S_t f\|_{L^1(X \otimes Y)} = 0$$

Lemma 4. For every $f \in L^1(X \otimes Y)$ there exists a measurable function g(t, x, y) on $R^+ \otimes X \otimes Y$ such that, for every t,

$$(S_t f)(x, y) = g(t, x, y)$$
 $\lambda \otimes \mu$ -a.e..

Such a function g(t, x, y) is uniquely determined except on a set of

 $dt \otimes \lambda \otimes \mu$ - measure zero.

For the proof, see [1], [4].

By virtue of Lemmas 1 and 4, given t and $f \in L^1(X \otimes Y)$, $T(t, x)f(\varphi_t x, y)$ has its good version $[T(t, x)f(\varphi_t x, y)] = g(t, x, y)$. Thus, in order to obtain Theorems 1 and 2 it suffices to apply Dunford-Schwartz ergodic theorem [2, Theorem 5 in § 4] and Krengel-Ornstein local ergodic theorem [3]–[5], to the present semigroup $\{S_t : t \in R^+\}$ on considering a good version $[T(t, x)f(\varphi_t x, y)]$ for $f \in L^1(X \otimes Y)$.

The results in the present paper are extended to the case of a multiparameter random quasi-semigroup. In the case, Dunford-Schwartz ergodic theorem [2, Theorem 10 and 17 in § 4] and Terrell local ergodic theorem [5] are used for the proof.

References

- N. Dunford: Integration and l:inear operations. Trans. Amer. Math. Soc., 40, 474-494 (1936).
- [2] N. Dunford and J. T. Schwartz: Convergence almost everywhere of operator averages. Jour. Rational Mech. and Anal., 5, 129–178 (1956).
- [3] U. Krengel: A local ergodic theorem. Inventiones Math., 6, 329-333 (1969).
- [4] D. Ornstein: The Sums of Iterates of a Positive Operator. Advances in Probability and Related Topics, Vol. 2 (edited by P. Ney, Marcel Dekker Inc.), 85-115 (1970).
- [5] T. M. Terrell: Local Ergodic Theorems for N-parameter Semigroups of Operators. Contributions to Ergodic Theory and Probability, 262-278. Springer-Verlag (1970).
- [6] S. Tsurumi: A Random Ergodic Theorem. Ergodic Theory (edited by F. B. Wright) 259-271. Academic Press (1963).