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0. Introduction. Even with quite simple differential equa-
tions, it can happen that their solutions are not expressible in a closed
form and that a numerical approach is the most convenient way to
deal with the problem. And in this case i an approximate value y
of the solution y(x) of a differential equation at the point Xn has been
calculated by some approximate methods, the estimate on the magnitude
o error
(0.1) en--Yn--Y(Xn) (n=l, 2, 3, ...)
is of great importance.

While we possess simple and useful error estimate for the propa-
gation of error, it seems, however, that if we concern with the problem
of asymptotic behavior of the propagation of error, not so many results
appeared. The purpose o this paper is to state some results on a
propagation o error of some approximate equations.

Finally the author wishes to express his thanks to Dr. M.
Yamamoto ot Osaka University or his kind advices and invaluable
suggestions.

1o First we consider the first order differential equation:
xly --f( Y)(1.1)

y(Xo)=Yo.
We shall now try to approximate the equation (1.1) by the difference
equation"
(1.2) Yn+I--Y -+- hf(xn, Yn)
which is known as Euler’s method.

In actual calculation, the calculated value of Yn+ is given by the
formula:
(1.3) Yn+"-Yn +hf(x, y)--R+I (Rn round-off error)
On the other hand, if we denote the true value of the solution o (1.1)
at the point X=Xn by Y(Xn), we have also the relation:
(1.4) Y(Xn+l)--y(Xn)+hf(xn, Y(Xn))+ Tn+,
where T denotes the truncation error corresponding to the n-th step.
If we subtract (1.3) rom (1.4) and write
(1.5) E=Tn+R,
we find the difference equation:
(1.6) e+--en -+- h(f(x, y(x))--f(x,, Yn)) -+-En+.
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We notice first that we may write
f(x, Y(Xn)) f(x, y)--fy(Xn, ]n)(Y(Xn) Y)

if f exists, where ] is a number between Yn and y(x), so that (1.6)
may be written in the orm"
(1.7) en / en / henfv(Xn n) --En + 1.

Here we discuss the asymptotic behavior of the solution of the differ-
ence equation (1.7).

At first we shall give several lemmas.
Lemma 1.1. The solution of the difference equation:

gZ(Xo +nh)= Az(xo + (n- 1)h) + B(xo + (n-- 1)h)z(Xo + (n-- 1)h)
+ W(Xo+ (n- 1)h) (A constant)

is
Z(Xo) n-1

Z(Xo/nh)-- Y(xo+nh)+ Y(xo+nh) Y-l(Xo+(,+ 1)h)
I/A --o

n-1

B(xo + ,h)z(Xo + ,h) + Y(xo+nh) Y-l(Xo + ,h)w(Xo + ,h)
9=0

where Y(t) is a solution of the following equation:
P’Y(x)=AY(x--h)
Y(xo) 1 +A (A# 1).

In the above lemma V denotes the back-ward difference operator and
using the above lemma we have the following lemma.

Lemma 1.2. Consider the difference equation:

VZ(Xo + nh)- pZ(Xo + (n- 1)h) + B(xo + (n- 1)h)Z(Xo + (n- 1)h)
+ W(Xo + (n-- 1)h) (p" constant)

Z(Xo) Zo Zo ]=< C)
and suppose that

1 [Y(xo+h)[-Co< c
9-----0

where Y(t) is a solution of the difference equation:
/7Y(x0 + nh)= pY(xo + (n- 1)h)
Y(xo)-- (1 + p) (p4= 1),

1( 2 B(xo / nh) l<-_ (n= 0, 1, 2, ...),
4(C0 + 1)

and
C(3) lW(Xo+nh)l<= (n-0,1,2,...).
2Co

Then

Z(Xo + nh) l<= 2C (n=0, 1,2,...).

The difference equation (1.7) may be written in the orm:
(1.8) Ten=pe+(hfv(Xn+in)-p)e+E/l.
Hence rom Lemma 1.2 we may obtain the next theorem.
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Theorem 1.
conditions"

(1)

and

Considering the difference equation (1.8) under the

(X, y) constant),

(2) IEnl<, C
2C0

we have

lenl2C

4 Y(xo + ,h)]

Next we shall show that under certain conditions the solution o
difference equation (1.8) tends to zero as n-c. Before giving Theorem
2 we shall present a lemma.

Lemma 1.3. Consider the difference equation"

VZ(Xo + nh)- Az(xo + (n- 1)h) + B(xo + (n- 1)h)z(Xo + (n-- 1)h)
+ W(Xo + (n-- 1)h)

.Z(Xo)-Zo
under the following conditions:
( 1 the solution of the difference equation:

gY(xo + nh)--AY(xo + (n-- 1)h)
Y(xo) 1

tends to zero as n-c

2 B(xo + nh) l< le(2-) (n- O, 1 2, ...)
"--4

W(Xo + nh)]<= ae-’(x/ nh)(3)
where

2 --log (1 +A), 2]0, 2) 2 and e-’x a0,

9=0

then
levi =<2e- (n-0, 1,2,...).

Consequently we have the next theorem.
Theorem 2. If we choose

0h-I(A + -e(e-) 1))
where the constants A, 2, 21 are given in Lemma 1.3 and the constant k
is given in the following condition (1), then the error en obtained from
(1.8) satisfies the inequality

[en[<=2e-n (n=O, 1,2,...)
under the following conditions"
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3f (x y)<k (k constant)(1)

2 IE(xo
where the constants a, , 1 are given in Lemma 1.3.

2. In 1 we consider the propagation o error o a special
approximation method. And it will be investigated in this section the
propagation o error o general one step methods. General one step
method may be written in the orm with an appropriate unction
(x, y: h), using the same notation as in 1,
(2.1) Yn+----Yn + h(x, Yn h)-- T+
and
(2.2)
where

Y(Xn+)--Y(Xn) -- hi(Xn, Y(Xn) h) + Rn41

(2)

(3) lenin=

<= k (k constant)

2(C/1)
where

we have

In 1 and 2 we investigated the propagation of error of open
formula. Then, using the same idea, we may investigate the propaga-
tion of error of closed ormula and of general n-setp methods.

Detailed proofs and related results will appear elsewhere.

z(x+h)-z(x) (h#-O)b(x, y" h)-- h
.f(x, y) (h-- 0)

and the unction z(x) is a solution o (1.1).
From the equations (2.1) and (2.2), we may derive the equation"

(2.3)
en+--en+h{y(Xn,]n" h)}+ Tn+ +Rn+l
=e+hq(x, ]n h)/E+.

And corresponding to Theorem 1 we have the next result.
Theorem 3. Considering the difference equation (2.3) under the

conditions

1 leo _-<II/AI -I<A<,
2
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