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108. On Exponential Semigroups. II
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1. Introduction. Tamura and Shafer proved in [3] the following :

Theorem 1. If S is an exponential archimedean semigroup with
idempotent, then S is an ideal extension of I by N where I is the direct
product of an abelian group G and a rectangular band B and N is an
exponential nil-semigroup.

However, the converse is not necessarily true. For example, let
S={a, b, ¢, d} be the semigroup of order 4 defined by (x,y¢S)

xy=1vy for y#d and all z; xd=a for x+c; cd=>b.
S is the ideal extension of a right zero semigroup {a, b, c} by a null
semigroup of order 2. Associativity of S is easily verified, but S is
not exponential :
(cd)’=b*=D, cd’=ca=a.

The purpose of this paper is to prove Theorem 2 which character-
izes exponential ideal extensions of I by N, and to give an alternate
proof of the fact that I is completely simple. See the definition of the
used terminology in [3] and [1]. The notation may be different from
that in [1].

Theorem 2. S is an exponential archimedean semigroup with
idempotent if and only if S is an ideal extension of the direct product
I=AXGXM of a left zero semigroup A, an abelian group G, and a
right zero semigroup M by an exponential nil-semigroup N, with
product determined by three partial homomorphisms ¢: N\{0}—M,
®&: N\{0}—=G, y: N\{0} >4 in the following manner. Let (1,a,p),
v, b, e AXGXM, s,te N\{0}.

,a,p) 8=, (s®), sp)
52, a, ) =(ps, (s&)a, 1)

(201) ('2’ a, ﬂ)'(V’ b’ 77):(29 ab’ 77)
s ___{st if st£0in N
(s, (s&)(t®), tp) if st=0in N

2. Alternate proof of complete simpleness of I. In [3] Ander-
son’s theorem on bicyclic subsemigroup was used, but we will derive
primitiveness of idempotent elements. Assume that Sis an exponential
archimedean semigroup. Let ¢ be an idempotent element of S and let
I=8eS. Since ICSaS for all a €S, I is the kernel of S and hence I is
simple. Let e and f be idempotents such that ef=fe=f. Now Iel
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=(SeS)e(SeS)=(Se) (SeS) (eS)=(Se) (SfS) (eS)=(SeS) f(SeS)=IfI. So
there exist a’,% el such that a'fy’=e. Let x=ea’f and y=fvye.
Then xy=(ex’f)(fy'e)=e(x’ fy)e=e. Since y=vye, yx=ye)r=y(xy)x
=(yx)*=y** by exponentiality while xy=e implies e=(2y)’=(xy)(xy)
=z2(yx)y =22y =(xy)(yr)(2y) =e(yx)e=yx as we have ey=y and xe
=z by ef=fe=f. Finally f=ef=x)f=y(ex’f)f=ylex'f)=yxr=e.
Hence I is completely simple.

3. Preliminaries on ideal extension. Let D be a completely
simple semigroup and let D=H(4, G, M ; F) be the Rees regular matrix
representation of D where / is a left zero semigroup, G a group, M a
right zero semigroup and F a sandwich matrix. Each element of D is
expressed as

@Az, m),2ed,xeG,pe M.
The following are already known in [1], [2] or will be easily proved by
readers.
(3.1) Let h: M—M and p: M—G be mappings. If we define ¢, ,,: D
—D by

(1, X, #)So(p,h) :(2, x(ﬂp)’ ﬂh’)
then ¢, 5, is a right translation of D. Every right translation of D
is obtained in this manner, and the correspondence (p, h)—¢,, s, is one
to one.
(3.2) Letk:A—4 and q: 4—G be mappings. If we define vy q),: D
—D by

‘!’((lc,q))(la X, ﬂ):(kz, (gD, /l)
then v .q), is a left translation of D and every left translation of D is
obtained in this manner. The correspondence ((k, ¢))—V g, 1S One
to one.
(3.83) Let F=(f,),reM,2e 4. Then ¢, , is linked with v 4, if and
only if

D)« fun,i=Funa (@) for all peM,2¢ 4.

In the present paper we deal with I=4 X G XM (for D) in which all f,,
equal to the identity e of G. Hence we have
3.4 “p=q2 for all peM,ie A

Thus p and q are constant mappings taking the same value in G.
The p and ¢ are denoted by p, and ¢, respectively, that is, up,=a,
g.A=a for all pe M, all 21¢ 4.

Vs aw) * Wik, ap = V(e kia, aan)s
P parhn * P he) = PDassharhaye
The translational hull 4((I) of I consists of (W x,q4.9s Pepe,ny) DA
(W (krraan s §0<pu,h1>)(‘lf((ka,qw>’ Py, na)

= (W ree2,0009)> Pt harhad)
(8.5)  @w,n (Wkh.qp) 18 an inner right (left) translation of I if and only
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if h (k) is a constant mapping. We redenote & (k) by &, (k,), i.e. ph,,
=y, for all pe M, (k,A=2, for all 2e A). Then 4, x, WP, 1, =2, 1)
(&, 0, for all £ 4.

Victrgraan As &5 )=, €, P2, , 1) for all ne M.

The translational hull 4((I) is isomorphic onto the direct product
IXGXTy={lk,a,hl: ke T, ac G, hedy} where I, and I, are the
full-transformation semigroups on 4 and M respectively, under the
map

(Wckrgan? Ppan) 1Ky @y ]

Let DU ={(V (k19,000 Pvartp) * b € A, 0 € G, g € M}

Since I is weakly reductive, 9D(I) is isomorphic onto I under the
composition :

(Wcizgraar» ?(pa,hﬂo))’_’[kzo’ a5 = (Roy @y o).
After identifying, let (V' x,401ys Pwa,n) =k, @, R].

4. Exponential ideal extension. Since I is weakly reductive, an
ideal extension of I by N is determined by a partial homomorphism P*
of N*=N\{0} into 4(I) which satisfies

P*(s)P*(t) € D) if s,te N* and st=0in N
(See [1], [2]). For the notational convenience P*(s) is denoted by

P*(s)=[k®, g, h®] where £k®°ec9,,9°ecG and h®ed,.
Now extend P* to P on S=IUN* as follows
@.1) {P(s):P*(s) if se N*

PQ,a,=Ik;a,h, if Q,a, el
where k, and h, are constant mappings. After identifying [k, a,h,]
with (1, a, 1), the operation on S can be expressed as follows:
(2, a, [1)(1": by 77):('29 a’b’ 7])=P(29 a, ﬂ)P(V’ b’ 7])
A0, p)-8=@Q,a-9°, uh)=PQ, &, WP*(s)
8, a, ) =(k"2, 9%a, ) =P*()P(2, a, p1)

4.2) st if st0in N
§ - t={P*(s)P*(t) = (2, Gy, tto) (if st=01in N, (4, &, 1)
is uniquely determined.)
Accordingly
4.3) {xy:P(x)P(y) =P(xy) ifxyel
P(xy)=P(x)P(y) for all z,y e S.

Thus P is a homomorphism of S into D).

Assume that we obtain an exponential ideal extension S of I by
an exponential nil-semigroup N. Let se N*. Since N is nil, there
is a positive integer n such that s” e I, hence (P(s))" ¢ DY), i.e. k"
and A" are constant mappings. Let (P(s))"=l[k,,, 9, h,].

By exponentiality of S,
A, 0,-9"=@Q, a, pms™ for all (4,a,p) el,se N*.
By (4.3) we get
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(44) ([k” a, h#][k(s), g(s)’ h(s)])n___[kl’ ag(s)’ h#h(s)]n
—_ [k” (ag(s))n’ h‘uh(s)].
On the other hand
(4.5) [k, a, h,1"[E®, g®, R®]* =Ik,, a", b1k, 9, h,,]
= [kz’ arg, h/q]‘

From the equality ‘“‘(4.4)=(4.5)”, we have

h,h®=h,, for all pe M,
that is, ph® =g for all pe M.
Hence A2 is a constant mapping. Similarly, starting (s-(1,a, )"
=s"(1, a, )", we can prove that £ is a constant mapping.

Consequently P* induces mappings

i N*—>A, &:N*->G, ¢:N*->M
such that P*(s)=[k,,,s®, h,,]. P* is a partial homomorphism of N*
into 9I), and hence P is a homomorphism S into H(I). Thus we have
obtained (2.1).

Conversely assume that ¥, ®, ¢ are given and that S is defined by
(2.1). The three mappings induce a partial homomorphism P* of N*,
P*(s)=[k,,, s®, h,,], and hence induces a homomorphism P of S into
D) by (4.1). Associativity of S is assured by the general theory of
ideal extension of a weakly reductive semigroup, and so we need only
to show exponentiality of S:

(4.6) (xy)™=x™y™ for all z,y € S, for m>1.
First note that I is medial ; hence P(S) is medial.

If amy™ ¢ I then (4.6) is obtained by the exponentiality of N. If
xmy™ e I, then (zy)™ ¢ I and, by (4.3) and the above remark,

xmy™ = P(x™)P(y™) = (P(@)™(Py)H™,

(xy)™ = P(xy)(P((xy)™ 1)) = P(xy)(P(xy))™ ' = P(x) P(y)(P(x) P(y)™
= P(x) P)(P @)™ (Py)™ ' = P(x)(P (@)™ *P(y)(Py)™ "
=(P(@)™(Py)™.

Hence (4.6) has been proved.

An ideal extension of I by N determined by a partial homomor-
phism N*—9)(I) is called a strict ideal extension.

Thus we have Theorem 2' which is a restatement of Theorem 2
and also describes the “medial” case. The medial case is an immediate
consequence from the fact that P(S) is medial.

Theorem 2. S is an exponential (medial) archimedean semi-
group with idempotent if and only if S is a strict ideal extension of the
direct product of an abelian group G and o rectangular band B by an
exponential (medial) nil-semigroup N.

Finally we exhibit an example of exponential semigroup which is
not medial. It is sufficient to show such a nil-semigroup. Let F be

the free semigroup generated by two letters e, b and let S* be a subset
of F defined by
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S*={a,b, ab,a’, ba, a’b, aba, a’ba}
and I=F\S*.
Then I is an ideal of F. Let S=F/I. S is an exponential semigroup
of order 9 which is not medial since a*ba=+aba*=0.
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