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105. A General Local Ergodic Theorem

By Yoshihiro KUBOKAWA
The Institute of Statistical Mathematics

(Comm. by KSsaku YOSIDA, M. . A., Sept. 12, 1972)

1. Introduction and the theorem. The purpose of this note is to
prove a local ergodic theorem or a one-parameter semi-group of posi-
tive bounded linear operators on LI(X). A local ergodic theorem for a
one-parameter semi-group of positive linear contractions was proved
by Krengel [5], Ornstein [6], Akcoglu-Chacon [1] and Terrell [7] under
little different conditions. Fong-Sucheston gave a proof of a local
ergodic theorem for a special class of one-parameter semi-groups of
positive uniformly bounded linear operators [4].

Let (X, !, m) be a a-finite measure space and LI(X)= LI(X, , m) be
the Banach space of real integrable functions on X. Let (Tt)(t>O) be
a strongly continuous one-parameter semi-group of positive bounded
linear operators on LI(X). This means that Tt is a positive bounded
linear operator on Lx(X) for every t0 and To-I (identity) (The posi-
tivity of T means that Tf>O, if f>O.), (R) Tt+sf= Tt o Tsf or any t,
s > 0 and f e L(X), (R) limt_0 Ttf--f 0 for any f e Lx(X) (strong con-
tinuity). Then there exist constants M, fl such that IITtll<Me [9].
(If we can take M= 1, =0, then (Tt) is said to be a strongly continu-
ous one-parameter semi-group of positive linear contractions.) By the
strong continuity of (Tt), there exists a function g(t, x) such that for a
fixed tO, g(t, x)--(Ttf)(x) for a.e. x and g(t,x) is + !-measurable,
where + is the a-algebra of Lebesgue measurable sets cn the half real
line [0, c). The function with this property is uniquely determined in
the class of + -measurable functions [3, 8]. We define the integral

(Ttf)(x)dt (Oa<b<) by g(t, x)dt.

We shall prove the ollowing

Theorem. Let (Tt) be a strongly continuous one-parameter semi-
group of positive bounded linear operators on L(X). Then we have

lim (Ttf)(x)dt-- f(x) a.e. for any f e L(X).
a---,O

Corollary. If g> 0 and g e LI(X), then we have

lim a e. f e
.-o :(Ttg)(x)dt g(x)
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on {x: g(x) 0}.
2. The proof of the theorem.
Lemma 1. Let f LI(X). For a.e. s (with respect to the Lebesgue

measure on the ha[ rea ine) we have

lim--(Tt+f)(x)dt-(Tf)(x)o or a.e. x.

The proo is bsed upon the Lebesgue theorem that or ny real
integrable unction f(t) on the real line, we have

lim l-[f(t+s)dt-f(s) or .e.s.
o

The proo o Lemma 2 in U. Krengel [5] is valid or that o
Lemm 1.

Lemma 2 (a maximal erodic lemma). Let fe L(X). If
lim sup1[(Ttf)(x)dt 0

Jo

on E, then we have

f
-(x)dm<;xf/ (x)dm.

Proof. Let (0el) be an abitrary positive number. By the
strong continuity of (Tt), there exists a positive number such that

1 ) Ttf-xr >/(I-- ) f-x and Ttf+ < (I + ) f+

for any t(O<t<),
( 2 sup T, K<.

0t<

(Z denotes the characteristic function of a set G)
Let us choose a positive number (0 3) such that

2g(3) -There exists a positive integer such that there exists a subset F of E
with properties,

( 4 sup (Tbf)(x)> 0 on F,

( 5 ) K[ f-(x)dm< z, where [a] is the integral part of a.
E_F

This may be proved as follows. It follows from the assumption that

( 6 ) sup (Tf)(z)dt> 0 on N.

Since the integral is a continuous function of the vari-

able >0 for a.e. z,

(7) lim su (Ttf)()dt= su (Tf)()dt
ee,

for a.e. x,
where Qv is the set of fractions with the denominator p (p is a positive
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integer.). We can choose a positive number e’ by (6) such that

(8) if m(A) ’, then /(A)3
where /(A)=K.f-(x)dm and E(’)--{x" sup 1/o:(Tf)(x)>2s’}E.
It ollos rom (7) by the gorov’s theorem, there exists n integer
q such that,

(9) sup 1](Ttf)(x)dt >’ for any x in a set F, with

F, cE(’) and z(E(’)--F) <e/3.

Since the integral 1/
1/[] =o? (Tzf)() () [g, 8], there exists a positive integer sueh
that

1E(J/q)]
(Tnf)(x) q /q

(Tf)(x)dt(10)
[l(]/ q)] =o

And it follows from this that
(]-- 1, 2, ..., [q]]).

(13)

(12)

We denote T/ by T so that (4) and (5) are written by (12) and (13),
respectively.

sup , (Tf)(x)>O on F,
0<j<[t] i=0

K_f-(x)dm<s.

We use the Chacon-Ornstein lemma"
Lemma (Chacon-Ornstein) [2]. If sup0<j<N ,{0 (Tf)(x) > 0 on F,

then there exist sequences of non-negative functions {d} and {fg}
(0< k<N) such that

(14) Tnf+- Tn-d+fn (OnN),
k=0

N N

(15) df- and , d-f- on F.
k=0 k=0

Remark. Though the lemma was proved by them under the as-
sumption that I[TII<I and N--c, conditions (14) and (15) hold good
without the assumption.

Let us apply the lemma with N=[/V].
t--1k=o Tf. We have by (1), 14) and fN

Put n=[l(3-V)] and Sf

_
(T/tf)(x)-- q (Ttf)(x)dt <’(11)

[l(]/q)] :0

(]= 1, 2, ..., [qv]),
except on a set F. with m(FO’. By (8), z(F)(/3. Letting F-F
F we have (4) and (5) by (8) (9) and (11)
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(16)
(l+Df+dm>/ Sn TVf+dm

n

Since ISn/n(Td--d)dml(2]/n)KIIdll, it ollows rom (16)and (15)

that

Snko ; Nd7..dm<(l+s) f/dm+ 2KN ddm
n n =o

(17)
(l + D f+dm+2KN.f-dm.n

By (1) and (15),

(1-D f-dm<-Sf-z,dm
(18) S , d7.dm + f-7._dm.

And so by (17) and (2)

If tends to infinity, N/n=[lv]/[l(3-V)] tends to V/(-V), and by (19),
(3) and (13) we have,

(1--D/f-dm(l+Dff/dm+2.
Arbitrariness of implies the Lemma 2.

The proof of the theorem. I the theorem does not hold, then
there exists a positive number (01), a unetion f and a set E such
that

(20) lim sup --1: (Ttf)(x)dt-- f(x) >
a-0 Of

on E and 0 re(E)
Let ’ be an arbitrary positive number with 0<’<1/10. Put
By Lemma 1 we can choose a unction g such that

(21)
If--gl, except on a set with a measure less than
min (re(E), 1),

(22)
and

(23) lim (Ttg)(x)dt-- g(x)
a--,0

Then we have by (20), (21) and (23)

lim sup --l:Tt(f--g)(x)dt
a-0

(24)
lim sup

a.eo

1 f:(Ttf)(x)d-f(x)+ f(x)-g(x)> 2
on F,
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where F-E {x" If-- gl} and therefore by (21)
re(E-F) min (re(E), 1).

Again by Lemma 1 we can choose a non-negative unction h (Put h(x)
--(T(1--/2)Z)(x) or a suitable s.) such that
(25) 1-4h(x)41 on G with GcF and m(F-G)e min (re(E), 1),

(26) lim1 (Tth)(x)dt- h(x) a.e.
a--.0 O

Then we have by (24), (25) and (26),

(27) lim sup 1- T (f--g---h)(x)dtO on G.

By Lemma 2, h/> 0 and (22), we have
( h) +(x)dm

<(f--g)+(x)dm<e.

Since (f-g-(/2)h-(x)>/3 on G by (21),(24) and (25) we have,
remembering -d(0 d 1 / 10, 0 1),
(29) re(E) m(G) +2 3d +2 5d.
Arbitrariness of e’ implies that m(E)-O. This contradicts the assump-
tion (20) and the proo is complete.
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