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105. A General Local Ergodic Theorem

By Yoshihiro KUBOKAWA
The Institute of Statistical Mathematies

(Comm. by Kosaku YosIDA, M. J. A., Sept. 12, 1972)

1. Introduction and the theorem. The purpose of this note is to
prove a local ergodic theorem for a one-parameter semi-group of posi-
tive bounded linear operators on L,(X). A local ergodic theorem for a
one-parameter semi-group of positive linear contractions was proved
by Krengel [5], Ornstein [6], Akcoglu-Chacon [1] and Terrell [7] under
little different conditions. Fong-Sucheston gave a proof of a local
ergodic theorem for a special class of one-parameter semi-groups of
positive uniformly bounded linear operators [4].

Let (X, 8B, m) be a g-finite measure space and L,(X)=L,(X, B, m) be
the Banach space of real integrable functions on X. Let (T,)(t>0) be
a strongly continuous one-parameter semi-group of positive bounded
linear operators on L(X). This means that @ T, is a positive bounded
linear operator on L,(X) for every t>0 and T,=1 (identity) (The posi-
tivity of T means that Tf>0, if 1>0.), ® T,,,f=T,oT,f for any t,
s=0and f e L(X), ® lim,_,||T.f— f||=0 for any f € L,(X) (strong con-
tinuity). Then there exist constants M, 8 such that ||T,|<Me® [9].
(If we can take M =1, =0, then (7,) is said to be a strongly continu-
ous one-parameter semi-group of positive linear contractions.) By the
strong continuity of (T,), there exists a function g(¢, x) such that for a
fixed >0, g(t, )=(T,f)(x) for a.e. x and g(f, ) is * X B-measurable,
where & is the g-algebra of Lebesgue measurable sets on the half real
line [0, c0). The function with this property is uniquely determined in
the class of 2 X B-measurable functions [3,8]. We define the integral

Jb(Tt P@dt 0<a<b< o) by rg(t, 2)dt.

We shall prove the following
Theorem. Let (T,) be a strongly continuous one-parameter semi-
group of positive bounded linear operators on L(X). Then we have

lim L (T, ) @dt=r@  a.e. for any fe L(X).
a Jo

a=0

Corollary. If 9>0 and g € L,(X), then we have

@@ g

I“ @) a.e. for any f e Ly(X)
| T9@)dt
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on {x: g(x)>0}.

2. The proof of the theorem.

Lemma 1. Let f e L/(X). For a.e. s (with respect to the Lebesgue
measure on the half real line) we have

hm— (Tmf)(x)dt (T fHx) for a.e. x.

a—0

The proof is based upon the Lebesgue theorem that for any real
integrable function f (t) on the real line, we have

lim — f(t+s)dt f(s) for a.e. s.

a—0

The proof of Lemma 2 in U. Krengel [5] is valid for that of
Lemma 1.
Lemma 2 (a maximal ergodic lemma). Let fe L(X). If

lim sup — (th)(x)dt>0

a—0

on E, then we have

fEf-<x>dm<ij+<x)dm.

Proof. Let ¢(0<e<1) be an abitrary positive number. By the
strong continuity of (T',), there exists a positive number § such that

(1) 1T xellZT =) fxell and |T.f*I<T+o)| S]]
for any t(0<t<9),
(2) 0s;1t1£I|Tt||=K<oo.

(x¢ denotes the characteristic function of a set G)
Let us choose a positive number 7(0<»<§) such that

(3) 2’7K 1fll<e.

There exists a positive integer l such that there exists a subset F' of F
with properties,

(4) sup ¥ (T%,/)@>0 onF,

0<j<l9] i=0

(5) Kj f-(@)dm<e,  where [a] is the integral part of a.
E-F
This may be proved as follows. It follows from the assumption that
(6) sup L (T, H@dt>0 onE.
0

0<a<ly

Since the integral 1/« “(Tt (x)dt is a continuous function of the vari-
0
able a>0 for a.e. ,

(M) lim sup — (th)(x)dt-—- sup — (th)(w)dt
pooo 0<eaQ<1:7 (44 <a<ly
for a.e. x,

where @, is the set of fractions with the denominator p (p is a positive
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integer.). We can choose a positive number ¢’ by (6) such that

(8) it mA)<e, then A<~ and uE—-BE)<,

where ,u(A):KJ‘ f~(@)dm and E(E)= {x: sup 1/« a(th)(x)>2e’} NE.
A 0<a<lp 0

It follows from (7) by the Egorov’s theorem, there exists an integer

q such that, if p>q,

(9) sup 1 a(T,f)(x)dt>e’ for any « in a set F', with
0

0a<eu<77 o
F.CE(/) and wE(E)—F)<e¢/3.
Since the integral l/aJ“(Tt Nx)dt is equal to the strong limit of
0

1/Inal 3352 (T4, )(®) (n—o0) [3, 8], there exists a positive integer I such
that

1 Lol q (' ¢
10 _1 ¢, @ —2 [ (@ dt
(10 H G & D@ yL (TN@ H< a7l

(.7'=1’ 2’ ] [(M])-
And it follows from this that

1 gl q [
H TG/ ol Ti By T, d 4
. ‘[z(j/q)] 2 TinhH@ jfo (T.f)(x) tl<e
(.7=1, 2, [qv]),

except on a set F', with m(F,)<¢. By (8), p(F,)<e/3. Letting F=F,
N F¢ we have (4) and (5) by (8),(9) and (11).

We denote T, by T so that (4) and (5) are written by (12) and (13),
respectively.

12) sup 3 (Tf)@>0  onF,
0<j<[lp] i=0
13) Kj” F@dm<e.

We use the Chacon-Ornstein lemma,:

Lemma (Chacon-Ornstein) [2]. If suPocjcy 2. iz (TP f)(@) >0 on F,
then there exist sequences of mon-negative functions {d;} and {f}
(0<Ek<N) such that

14) Trfr=3 T**de+f,  (O<n<N),
k=0
(15) Sde<f- and S dy=f- onF.
k=0 k=0

Remark. Though the lemma was proved by them under the as-
sumption that |T||<1 and N=co, conditions (14) and (15) hold good
without the assumption.

Let us apply the lemma with N=[ly]. Put n=[l(6—7)] and S, f
=> 3Tk f. We have by (1),14) and fy>0,
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(l—l—e)J Frdm> f Su v prqm
(16)
>j Sa z dydm + zj i (T¥-¥d, —d,)dm.

Since ‘ ISn/n(de-—d)dm’<(2j/n)K||d||, it follows from (16) and (15)
that

IS de){z«’d’m<(1+5) Frdm+ ZKNJ‘de
amn
<(1+e)jf+dm+ 2KN If .
By (1) and (15),

(1“5),[E f‘dm<J§1ff‘xEdm

(18) o g
=j7 > dkdeerj?f Yo_rdm.

And so by (17) and (2)
a9 a-af f-dm<(1+e)jf+dm+”‘—Njf-dm+Kff-xE_de.
E n

If I tends to infinity, N/n=[Iy]/[I(6—7)] tends to »/(6—7), and by (19),
(8) and (13) we have,

(1~e)IEf‘dm<(1+e)If+dm+2s.

Arbitrariness of ¢ implies the Lemma 2.

The proof of the theorem. If the theorem does not hold, then
there exists a positive number 6(0<d<1), a function f and a set E such
that
(20) lim sup — (T:f)(x)dt S@)>o

a—0
on E and 0<m(F)<oo.
Let ¢ be an arbitrary positive number with 0<{¢’<{1/10. Put e=¢d.
By Lemma 1 we can choose a function g such that
| f—g|<e, except on a set with a measure less than

@D e min (m(E), 1),
(22) | f—gll<e
and
(23) lim — (T,g)(x)dt g(x) a.e.
Then we have by (20) (21) and (23)
lim sup — Tt( f—o)(@)dt
24) )

—lim sup —— f (TP@d—F @+ @—g@> 3 onF,
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where FF=E N{x:|f—g|<e} and therefore by (21)
m(E —F)<e min (m(K), 1).
Again by Lemma 1 we can choose a non-negative function » (Put h(x)
=(T,(1—¢/2)xz)(x) for a suitable s.) such that
25) l1—e<h(x)<1on G with GCF and m(F —G) <e min (m(E), 1),

(26) lim -1 ("(T@dt=h@)  ae.
[a=0 0
Then we have by (24), (25) and (26),
@7 lim sup Lf T, (f—g—?_h) @dt>0  on G.
a0 a Jo 2

By Lemma 2, 2>0 and (22), we have
28) [ (f—g—%h) “@dm<| (f—g—gh) "(@dm

<I(f—g)+(x)dm<e.

Since (f—g—(/2h~(x)>d6/3 on G by (21),(24) and (25) we have,
remembering e=¢6(0<¢/<1/10, 0<5<1),

(29) M(E) < m(G) + 2 <3¢’ +2e < 5e'.

Arbitrariness of ¢ implies that m(E)=0. This contradicts the assump-
tion (20) and the proof is complete.
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