101. On Complex Parallelisable Manifolds and their Small Deformations

By Iku NAKAMURA

(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1972)

o°. Introduction. By a complex parallelisable manifold we mean a compact complex manifold with the trivial holomorphic tangent bundle. Wang [7] showed that a complex parallelisable manifold is the quotient space of a simply connected complex Lie group by one of its discreet subgroups.

This note is a preliminary report on our recent results on complex parallelisable manifolds and their small deformations. Details will appear in the forthcoming paper [5].

- 1°. Let X be a compact complex manifold of dim n. We denote by \mathcal{O} and Ω^p the sheaf of germs of holomorphic functions and the sheaf of germs of holomorphic p-forms. We define $h^{p,q} = \dim H^q(X, \Omega^p)$, $P_m = \dim H^\circ(X, (\Omega^n)^{\otimes m})$, r =the number of linearly independent closed holomorphic 1-forms, $\kappa =$ Kodaira dimension of X and $b_i =$ the i-th Betti number of X. S. Iitaka proposed the problem whether all P_m and κ are deformation-invariants ([1]).
- 2° . Proposition. A simply connected complex Lie group G of $\dim_{\mathbb{C}} n$ is analytically homeomorphic to \mathbb{C}^n as a complex manifold.
- **Proof.** We shall prove the proposition by induction on n. It is obvious in case of n=1. Let the Lie group be G. If $n \ge 2$, we can take a connected normal subgroup N. Then the canonical mapping $\pi: G \rightarrow G/N$ defines a holomorphic fiber bundle. Since both G/N and N are connected and simply connected we obtain the proposition by the induction hypothesis and Grauert's theorem.
- 3° . We define a complex parallelisable manifold to be solvable if the corresponding Lie group is solvable. From now on we assume X to be solvable. Note that the universal covering of X is analytically homeomorphic to C^n by the above Proposition.

Theorem 1. Three dimensional solvable manifolds are classified into the following four classes.

	Lie group	$b_{\scriptscriptstyle 1}$	r	$h^{\scriptscriptstyle 0,1}$	Structure (Albanese mapping)
(1)	abelian	6	3	3	complex torus
(2)	nilpotent	4	2	2	$T^{\scriptscriptstyle 1}$ -bundle over $T^{\scriptscriptstyle 2}$
(3a)	solvable	2	1	1	$T^{\scriptscriptstyle 2}$ -bundle over $T^{\scriptscriptstyle 1}$
(3b)	solvable	2	1	3	$T^{\scriptscriptstyle 2}$ -bundle over $T^{\scriptscriptstyle 1}$

where T^1 and T^2 denote complex tori of dimension 1 and 2, respectively. We can calculate small deformations explicitly by solving the differential equations in the deformation theory of Kodaira-Spencer-Kuranishi. Computing numerical characters of their small deformations we obtain interesting results:

- (i) $h^{p,q}((p,q)\neq(0.0))$, r,κ , and P_m are not necessarily deformation invariants.
- (ii) In case of (3b) there exists a small deformation whose universal covering is not analytically homeomorphic to C^3 . This example is constructed as follows.

Take a unimodular (2, 2) matrix A with $\operatorname{tr} A \geq 3$. Let J be the Jordan form of A, that is to say, $J = P^{-1}AP$ for a non-singular matrix P. Let α and $\alpha^{-1}(\alpha > 1)$ be the eigenvalues of A. We note that α is real since $\operatorname{tr} A$ is greater than 2.

Let T^2 be a complex torus defined by the period matrix $(P^{-1}, \tau P^{-1})$ where τ is a complex number with a positive imaginary part. We define two automorphisms g_1, g_2 of $C \times T^2$ as follows

$$g_1: (z_1, z_2, z_2) \rightarrow (z_1 + 2\pi i, z_2, z_3)$$

 $g_2: (z_1, z_2, z_3) \rightarrow (z_1 + \beta, \alpha^{-1} z_2, \alpha z_3)$

where $\beta = \log a > 0$.

Letting Γ_1 be an automorphism group of $C \times T^2$ generated by g_1 and g_2 we have a compact complex manifold $X = C \times T^2/\Gamma_1$. Then X is parallelisable and $h^{0,1}(X) = 3$. In fact $\varphi_1 = dz_1$, $\varphi_2 = e^{z_1}dz_2$ and $\varphi_3 = e^{-z_1}dz_3$ form a basis of $H^{\circ}(X, \Omega^1)$, and $\bar{\varphi}_1$, $e^{z_1-z_1}\bar{\varphi}_2$ and $e^{-z_1+z_1}\bar{\varphi}_3$ generate $H^1(X, \mathcal{O}) \cong H^{0,1}_{\bar{\vartheta}}(X)$ (Dolbeault isomorphism). We can also consider X to be a quotient space of C^3 , i.e., $X = C^3/\Gamma$. Then an interesting small deformation X_t of X is given as follows:

$$X_t\!=\!W_t/\varDelta_t$$
 where $W_t\!=\!\{(w_1,z_2,z_3)\,;\,w_1\!+\!tar z_2\!
eq0\}$ and \varDelta_t is defined by, $w_1'\!=\!e^{-\omega_1}(w_1\!-\!tar \omega_2) \ z_2'\!=\!e^{-\omega_1}(z_2\!+\!\omega_2) \ z_3'\!=\!e^{\omega_1}(z_3\!+\!\omega_3),\,(\omega_1,\omega_2,\omega_3)\in\varGamma.$

For this deformation $X_t(t \neq 0)$ we have $P_m(X_t) = 0$, $h^{0,1}(X_t) = 2$, $r(X_t) = 0$, etc.

Remark. $X_0=X$. $W_t(t\neq 0)$ is not Stein and hence the universal covering of W_t is not Stein.

We can also classify four and five dimensional complex solvable manifolds in the same way as above.

4°. Theorem 2 (Kodaira). Assume X to be parallelisable such that the corresponding Lie group is nilpotent. Then we have $h^{0,1}=r$.

Theorem 3. For a complex solvable manifold we have $b_1=2r$.

Theorem 4. If a complex solvable manifold satisfies the equality $h^{0,1}=r$, then any small deformation has C^n as its universal covering.

Remark. For most complex solvable manifolds we have $h^{0,1}=r$.

References

- [1] Iitaka, S.: Classification and plurigenera of algebraic varieties. Sugaku, 24, 14-27 (1972) (in Japanese).
- [2] Kaneyuki, S., and Nagano, T.: On the first Betti numbers of compact quotient spaces of complex semi-simple Lie groups by discrete subgroups. Sci. Papers Coll. Gen. Ed. Univ., Tokyo, 12, 1-11 (1962).
- [3] Kuranishi, M.: On the Locally complete families of complex analytic structures. Ann. Math., 75, 536-577 (1962).
- [4] Mostow, G. D.: Factor spaces of solvable groups. Ann. of Math., 60, 1-27 (1954).
- [5] Nakamura, I.: On complex parallelisable manifolds and their small deformations (to appear).
- [6] Raghunathan, M. S.: Vanishing theorem for cohomology groups associated to discrete subgroups of semi simple Lie groups. Osaka J. Math., 3, 243-256 (1966).
- [7] Wang, H. C.: Complex parallelisable manifold. Proc. Amer. Math. Soc., 5, 771-776 (1954).