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153. Finitary Objects and Ultrapowers

By Tadashi OHKUMA

(Comm. by Kinjir5 KUNUGI, M. J.A., Nov. 13, 1972)

Introduction. When we deal with categories of systems with
structures, we often feel it desirable to set up a notion that distinguish
algebraic structures, such as ordered sets or groups, from infinitistic
theories, such as topological spaces. One attempt was made in [4] for
concrete categories and studied particularly in connection with ultra-
powers. Here the notion of finitary objects defined in [4] for concrete
categories, together with one of the theorems concerning them and
ultrapowers of objects, is generalized to abstract categories. Only the
definitions and the results are given below. The proofs and further
details are to be referred for to a paper with the same title which will
be published elsewhere, of which this is an abstract.

As for the terminology, we mostly follow Isbell [2] and the terms
"extremal monomorphisms", "small complete", "left complete", "locally
small", "strict monomorphisms" etc., are used in his sense without
citing the definitions. "The co-intersection of quotient objects" is the
dual notion of "the (representable) intersection of subobjects" in [2]
and "An object co-generates another" is the dual statement of "An
object generates another" of Grothendieck [1].

1. Finitary objects. Let C be an abstract category and Ob (C)
the collection of all objects in C.

Definition 1. Let L={b: XBI2 e.A) be a set of coterminal
morphisms in C. L is said to cover B if there is no proper extremal
monomorphism B that factors all b e L. The set L is called com-
patible with K {a X-A 2 e A}, if there exists an f: B-.A such that
a--fb for every 2 e A. L is called finitely compatible with K, if for
any finite subset M of A, {b ]2 e M} is compatible with {a 12 e M}. A is
called finitary under B, if for any sets L={b: X-BI2 e A} and
K={a: XA]2 e A}, L is compatible with K, provided the former
covers B and finitely compatible with the latter. A is called finitary,
if it is finitary under every B in Ob (C).

It can be seen that in the category of groups or of ordered sets, or
in more general, in that of models of an algebraic theory, of which all
primitive relations are finitary, every object is finitary, as is the
intension of Definition 1, while, in the category of Hausdorff spaces,
even a finite set, save for the singleton space, is not finitary.
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As for the properties of finitary objects, we got the following
theorems.

Theorem 1. In a category C which has equalizers, finitary objects
are closed in C under left limits of small diagrams.

Theorem 2. If C has pullbacks and pushouts, then an extremal
subob]ect of a finitary object is finitary.

For the next theorem, in case that a smaller procedure is prefer-
able to the co-intersection of a large family of quotient objects, we
prepare the notion of the image decomposition of a morphism. A de-
composition f--gh of a morphism f is called the image-decomposition
of f, if h is an epimorphism and g is an extremal monomorphism. If
the category has pushouts, the image-decomposition, if exists, is unique
for f. If every morphism in C admits its image-decomposition, we
say that the category has image-decompositions.

Theorem :. If either (i) the category C has pullbacks, pushouts
and co-intersections of quotient objects of any object, or (ii) C is locally
small and has pullbacks, pushouts, direct products and image-decom-
positions, then an object A in C is finitary in C, provided A is finitary
in the full subcategory F of C generated by all objects which are co-
generated by A.

Corollary. In a left complete locally small category C which has
pushouts, if an object is finitary in the full left closure of (A}, then it
is finitary in C.

Thus being finitary is, in a way, an intrinsic property of objects,
in the sense that, if an object is finitary once in a category C with
proper completeness, then it is also finitary in any extension of C.

2. Ultrapowers. Let be a set and A an object assigned to
each e . The canonical projection rom the direct product [e A
to its component A will be denoted by . When ’, a morphism

" [[ ez A- I-[ e, A is determined so that -’ for every e ’.
This is also called the projection and denoted by ,.

The notion of ultraproducts in model theory was generalized in
terms of categories in [4] as follows:

Definition 2. Let F be a set, a filter over F (cf. [3]) and A an
object in C assigned to each e F. The diagram in C which consists
of all l-Ie A with e as objects and all ,: ]-Ie A-[Ie, A
with ,’e and ’ as morphisms is called a product system
relative to . The right limit, if exists, of the product system is called
the reduced product of the family {A]$ e F} relative to q, and denoted
by [I er A/. When A=A for all e F, it is called the reduced power
of A relative to q, and denoted by Ar/. If is maximal, [ er A/q
and Ar/ are respectively called an ultraproduct and an ultrapower
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relative to O. The canonical injection I-[e A-*FIer A/O is also
denoted by s.

For a direct power As there is the so-called diagonal morphism
AA, which is denoted by d, such that [d" A--A is the identity
for every $ e . Obviously d,-,d for ’c, and hence we have
a morphism d: A--Ar/ such that d=Sd for all e O. d is also
called the diagonal morphism to the reduced power.

Those are natural extension of,usual ultraproducts in model theory
and the concomitant notions (cf. [3]). However, the application of the
definition above to general structures sometimes brings about pathologi-
cal phenomena, and many of important properties of ultraproducts are
no more retained. For example, it was shown in. [4] that an ultra-
product of Hausdorff spaces is always reduced to a singleton set except
when the filter is principal. Thus the diagonal morphism d is no
more an extremal monomorphism, while in model theory d must be
elementary, not to speak of its having to be an embedding.

Here one finds the essential rSle of finitary objects in the applica-
tion of the definition above.

Theorem 4. In a category C which is locally small and small
complete to the both sides, if the diagonal morphism d: A-.Ar/0 is an
extremal monomorphism for any set F and a filter 0 over it, then A is
finitary.

However, the converse of this theorem does not look true, and the
characterization for A so that d be always an extremal monomorphism
is still open.

Here we have one comment. By replacing the term "extremal
monomorphisms" in Definition 1 with general "monomorphisms", we
obtain the notions of, say "covering in the wider sense" and "wide-
finitary" respectively in places of "covering" and "finitary". Then for
Theorem 4, we obtain the following theorem which is proved also valid"
Under the same conditions for C as in Theorem 4, if d: A-.Ar/O is
always a monomorphism for any F and 0, then A is wide-finitary.
Also it can be seen that under proper modifications and substitutions
of terms, we have theorems for wide-finitary objects similar to theorems
in section 1, which remain also valid. This situation is all the same
for the notion of, say, "strict-finitary" obtained in place of "finitary"
by replacing the term "extremal monomorphisms" in Definition 1 with
"strict monomorphisms" (cf. [2]). There may be interesting pecuriari-
ties for each notion. However, among those various "finitarities" the
one given in Definition 1 seems most essential and we miss good ex-
amples of other modified finitarities.
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