No. 10] Proc. Japan Acad., 48 (1972) 719

163. Regularity of Solutions of Hyperbolic Mixed Problems
with Characteristic Boundary

By Mikio TsuJ1

(Comm. by Kinjird KUNUGI, M. J. A., Dec. 12, 1972)

§1. Introduction. At first we recall the following well-known
property of a solution of a hyperbolic Cauchy problem which is L*-well
posed: If the initial value is in H7(R"), then the solution is also in
H7(R™ for any time >0. We call this “The property of having finite -
norm is persistent”.

The author proved in [2] that, for a mixed problem to a first order
hyperbolic system, if this mixed problem is L*-well posed and the
boundary is not characteristic for the equation, then the property of
having finite 7-norm is persistent.

In this note we discuss whether the persistent property holds or
not in the case where the boundary is characteristic for the equation.
Let 2 be a sufficiently smooth domain in R*, M=d/ot—L(t,x; D,) be
a first order hyperbolic system whose coefficients are N X N matrices
in RB([0,TIx ) and P(t,x) be an N XN matrix defined on [0, T'] Xo%2.
Let us consider the mixed problem

1.1 Mlu(t, ©)1=f(t, x) in [0, TIX 2
(P) {(1.2) w(0, ) =¢(x) on 2
1.8) P(t, »)u(t, x)=0 on [0, T x08.

Definition. The mixed problem (P) is said to be L*-well posed if
for any initial data ¢(x) € D,={u(x) € H(2); P(0, x)ul,,=0} and any
second member f(t,x) e EXH(2) NENLH(Q)P there exists a unique
solution u(t, ) of (P) in EXLA(2)) N EAD(L(t))) satisfying the following
energy inequality

(L.4) lu® e (el + [, 1761 as),  telo,m,

where ¢(T) is a positive constant which depends only on T'.
We remark that 9D(I(t)) is the closure of D,={u(x)ec H(Q);
P(t)u |, =0} by the norm ||u| ., =||u|+| L(Oul. At first we state
Theorem 1. In the case where Q=R ={(,y);x>0,yeR"},

Lz[_g 8]a/ax—l— [2 (1)]8/ay and P=[1 0], the mixed problem (P) is

L*-well posed, but the property of having finite r-norm is not per-
sistent. More precisely, if the initial value o(x,y) € H™(R) satisfies

1) EYE) is the set of E-valued functions of ¢ which are k-times continuously
differentiable.
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P(L¥*¢) |,.o=0 (k=0,1,..., m—1) and f(t,x,y)=0, then the solution
u(t, x, y) =t(u,, u,) has the following properties

(i) w(t,x,y) e EPHM™-D2RYL)) and uy(t, x,y) € EF(HN ™ P(R?))
for any p=0,1, - .-, m,

(i) moreover, if we suppose more strictly that ¢(0,y) ¢ H™(RY,
then u,(t, z,y) ¢ H™ D2 (R2) and u,(t, z,y) ¢ H™* 1 Y(R2) for any t>0.

The above results can be extended to the following form. Let us
consider
(1.5) L(t,@; D)=3 At 0)-2

i=1 0%
where 4; (1=1, -..,n) and B are N X N matrices, and assume that the
boundary a2 of 2 is compact and sufficiently smooth. For simplicity,
we assume the following conditions

(C.1) A4, (=1, ...,n) are Hermitian matrices,

(C.2) the boundary matrix Az=>7,A4,t, x)v,(x) is singular, but
its rank is constant on 92 where =, v,, - - -,v,) is the exterior unit
normal to 92,

(C.3) P(t,x) isan N x N matrix, rank P=I[=constant and Ker P(?)
is maximally non-positive for L(t) on 82, i.e., we assume that

u-Au<0, ueKerP, t=0, xed®,
and that Ker P is not properly contained in any other subspace having
this property.

Then we have

Theorem 2. Assume that the date ¢(x) e HM() and the second
member f(t,x)e EMLANEFHYN -+ NENH™) satisfy the compati-
bility conditions (1.6) of order (m—1):

&
CROND > (’:) 6;5 0, ) %9 (z) ngo, k=0,1, .-, m—1,
where (@) =p(x) and p?*O(x) (p=0) is defined successively by the
formula

+B(t, x)

CPI(@) =" (”) (Z T4y 0,1) aa
3=1 1

=1 ott X

- orf
X P~ 9(x) +?tp_(0’ x).

0'B
+22.0,)
a.mn

Then there exists a unique solution u(t,x) of (P) in EP(HI™-P21(Q))
(p=0,1, - - -, m), and it does not necessarily belong to H™*1*(Q) for any
t>0.

Remark. In Maxwell equation, we pose 7 X E lso =0 as the bounda-
ry condition where #% is the exterior normal of the boundary and E is
the electric field vector. Then this mixed problem satisfies the conditions
(C.1),(C.2) and (C.3). However in this case the property of having
finite r-norm is persistent.
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Theorem 3. In the case where Q=R%, L= [ g g]a/ax+[ —]

Xa/oy (@>0;a,,a,e R) and P=[1 0], the necessary and sufficient con-
dition in order that the property of having finite r-norm be persistent
ts ¢=0.

§2. Proof of Theorem 1. Since the L*-well posedness is obvious
in view of [1], we prove the latter of this theorem. If ¢(x,%)=(¢,, ¢,)
is in H'(R2) and ¢,(0, ¥) =0, then the solution u(t, x, y) is given by u(t)
=ellp, which is in (L) N EAID(L)). Since the coefficients of L is con-
stant, ou/oy(t, z, y) =e**(0p[oy) € E}(LY). From the equation it follows

ou, _ 1 {ou, oy, o/ T 2

o _E{ oy ot } & &AL
Hence u,(t, 2, y) is in S(H'(R2)). Our purpose is to show that u,(¢, x, y)
does not belong to H'(R?%) for any ¢>0. Let us prove this by contra-
diction. For this we construct the solution u(t, x, ¥) concretely by using
Fourier-Laplace transform. We extend the definition domain of » to
R X R? by u(t,x,y)=0 for <0, and denote by (¢, &,») the image of
Fourier transform of u(t, x, y), i.e.,

@1 att, &= et y)dady.
R2
Then it follows
al(ty 8, 77) :-lay]— sin at- 6-i$t¢72(§, 7])

+ (cos at—lf— sin at) e~%@, (&, ),

2.2)

A,(t, &, = o —L sin at-e @, (&, )

€

*9 + { (cos at Y

sin at) + 2£ in a,t} e g, )
a
where a=+/& 7. Since

z;uz (t,x,y)=r T (s, ,y)ds+ 39"2 (x, )

; {auz(’ 7,0) =~ a Y (sxy)}d8+ 9: (z, )

1 (o, 1 { ou g } ago

—_— s Ly d - ! t’ 1) — L ’ 2 ’
2oay2(sxy)s 5 ay(acy) ay(ocy) (x, )

the necessary and sufficient condition in order that u,(t, x,y) be in
HYR2) is

(2.4) j PV (5, 2, y)ds € LARY), i.e., j:(i;y)zaz(s,g, Pds e LA(RY.

Substltutmg (2.3) into (2.4), we get
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I(zp)’uz(s, & pds =" ) AR I sin as-e-*ds

)¢ . —_ﬁ g-its
(2.5) + (i) @&, m) j (cos as sin as) ds

+M¢2(5, n) o‘re‘““ sin as ds
a 0
=Il+Iz+I3‘

The terms I, and I, are easily proved to be in L*(R?), therefore the term
I, must be in L*(R?. Since

\ .
I e s ginas ds= 1 (1—cosat.e %) — B e(s’g“ ea-Osidg
0 a+|§| a+[&]Jo

we get the following (2.6) in order to be I, ¢ L*(R?

Y N2 (an)2 ¢

(2.6) M %) (5, )I elslgn é-a~6)sifo = LZ(RZ)'
aatie) o

Taking account of the identity

0= @400, 0= v 0,9y,
we see that (2.6) is equivalent to

— (35)(7'77) t (sign é+a—§)st 2 2
2. Ft , ——=—,\V, . & d LARY).
(2.7 (t, &= (ot D(p( ) Le se LA(R?)

If we put I(t, n) =2(3*t*—=?/16) /xt, then for |&|=1(t, )
t t

2’8 J‘ (sign €~a—6)sid ‘2 .

@.8) oe 5|1= V2

Hence it follows
tZ

fe(slgnea e)stds. d&z

82
j m oX(a+|&))? VEXE
where c=1 /16I0 ?2(1+t)*dt. Therefore if we take ¢,(x,y) as ¢,(0,%)

¢ H'(RY), then F(t,¢, n) does not belong to L*(R* for any £>0. This is
a contradiction. Thus Theorem 1 is proved in the case m=1. For
general m we can prove by induction.

§3. Proof of Theorem 2. We can prove as in [2] that this mixed
problem has a finite propagation speed. Thus by the local transfor-
mation we can reduce to the case

QZR{::{(%'U ] xn) > (xu tt 0y xn-l) € Rn—l, xn>0}'

Moreover, applying an appropriate transformation of unknown
functions, we have only to consider the following fairly simple mixed
problem
8.1) ou/ot=Cr, AL, ©)a/ox;+ B, ©)u+ f(t, x)=LEu+ (1),
) t>0, xzeR",

3.2) w0, x)=¢(), xecRT,
(3.3) Pu |xn=0:0’ t>0, (wly ) wn-—l) e R",
where (A.1) A, (=1, ...,n) are NXN Hermitian matrices and A4,



No. 10] Solutions of Hyperbolic Mixed Problems 723
= [64” 8] where 4, is an X7 non-singular matrix, (A.2) P=[E,0] is
an [ X N matrix where ¥, is an I X! unit matrix, (A.3) Ker P is maxi-
mally non-positive for L(t). We remark that (A.3) assures I<r. Here
we treat the mixed problem (M) when L(¢) is independent of . When
L(t) depends on t, we can prove Theorem 2 by using energy inequalities
and Cauchy’s polygonal line as in [2]. Using Theorem 3.2 of Lax-
Phillips [1], we see that L generates a semi-group T'(f) in L*(R"), from
which the L*-well posedness is proved. We pass to the problem of
regularity. Letus put v, ="y, - -, %), V,="Wyp1, -+ =, Un), §:="(f1s - +»
f») and ¢,='(f,.,., -, fx), then there exist first order differential
operators L;; (¢, =1, 2) such that

3.4); ov; /ot =Ly v, + L;,v,+ 94, 1=1,2.

We see from (A.1) that L,,, L,, and L,, don’t contain the derivative with
respect to x,. First we consider the case m=1. Then the solution
u(t, x) is given by

u(t, 2)=T(®)p +j: T(t—s)f(s)ds

which is in E}LAHNEADL)). Let us put U, ) ="(*u, ‘0u/dt, ‘ou /ox,,
-« '9u/ox,_,), then U(t, x) satisfies

oU [ot=LU + F(t, x)
(3.5) {U(O, ) =0(x)
‘PUlwn=0=0
where
L P
E:{ }-I—lowerorder, P:{ }
L P
=t ¢ “Gp ... ‘aso)
0@)="('0, "Ly-+ 7O, oy
and .
_itfep OF ‘( of _ 04, [AZI 0] )
F@, ) (f’ at  \ oz, oz, LO Of ’

~

ey o))

As @(x) e LAR?) and F(t, x) € £X(L?), we see from (3.5) that U(¢, ) is in
ENL?. Therefore it follows from (3.4), that dv,/ox, is in &)(L?). Hence
(¢, 2) is in EX(HY).

Next we pass to the case m=2. Since in (3.5) @(x) € H'(R?) and
F(t, ) € EX(HY N ENLY), we can apply the result obtained now to (3.5).
Therefore, if we put V,=*(v,, ‘v, /dt, v, /0x,, - - -, 00, [0%,_y) (1=1,2),
V.(t, x) is in EXL) N EXHY. Hence in (3.5) Ly, + 9, is in EXLAH N ENHY).
Since v, is free of boundary condition and L,, generates a semi-group
in LY(R"), v,(t, x) is also in E(LHNENHY, which implies the required
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result in the case m=2. For general m we can prove this theorem by
induction. The method used here is essentially the same as in [2].
The detailed proof will be given in a forthcoming paper.

References

[1] P. D. Lax and R. S. Phillips: Local boundary conditions for dissipative
symmetric linear differential operators. Comm. Pure Appl. Math., 13,
427-456 (1960).

[2] M. Tsuji: Analyticity of solutions of hyperbolic mixed problems (to ap-
pear).



