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163. Regularity o Solutions o Hyperbolic Mixed Problems
with Characteristic Boundary

By Mikio TsuJI
(Comm. by Kinjir5 KUNU(I, M. J. )., Dec. 12, 1972)

1. Introduction. At first we recall the following well-known
property of a solution of a hyperbolic Cauchy problem which is L-well
posed: If the initial value is in H(Rn), then the solution is also in
H(R) for any time 0. We call this "The property of having finite r-
norm is persistent".

The author proved in [2] that, for a mixed problem to a first order
hyperbolic system, if this mixed problem is L-well posed and the
boundary is not characteristic for the equation, then the property o
having finite r-norm is persistent.

In this note we discuss whether the persistent property holds or
not in the case where the boundary is characteristic for the equation.
Let/2 be a sufficiently smooth domain in Rn, M=3/3t-L(t,x;D) be
a first order hyperbolic system whose coefficients are NN matrices
in _([0, T] /2) and P(t, x) be an N N matrix defined on [0, T] 32.
Let us consider the mixed problem

(1.1) M[u(t, x)]--f(t, x) in [0, T] X
(P) (1.2) u(O, x)--(x) on

(1.3) P(t, x)u(t, x)--O on [0, T]
Definition. The mixed problem (P) is said to be L-well posed if

for any initial data (x) e Do={U(X) e H(/2) P(0, x)ul=O} and any
second member f(t,x)e ’(H(tg))fl(L(tg))x)there exists a unique
solution u(t, x) of (P) in :(L(tg))f t(D(L(t))) satisfying the following

energy inequality

(1.4) Ilu(t)ll<c(T)(ll ll+f: ]]f(s)ll ds), t e [0, T],

where c(T) is a positive constant which depends only on T.
We remark that (L(t)) is the closure of Dt {u(x) e Hi(t0)

P(t)ulo,=O} by the norm Ilull(t)=llull+llL(t)ull. At first we state
Theorem 1. In the case where 9 R+ {(x, y) x > 0, y e R},

L--[-- 00]a/x+[10 ]O/yandP=[10],themixedproblem(P)is
L-well posed, but the property of having finite r-norm is not per-

sistent. More precisely, if the initial value (x, y)e H(R+) satisfies
1) ’t(E) is the set of E-valued functions of which are k-times continuously

differentiable.
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P(L)I__0=0 (k=0, 1,..., m-l) and f(t,x,y)--O, then the solution
U(t, X, y)--t(U, Ue) has the following properties

(-)/(R+))( u(t, x, y) e ’(J-(’/-)I(R+)),.. and
for any p=0,1, ...,m,

(ii) moreover, if we suppose more strictly that (0, y) H(Rg,
then u(t, x, y) H(+)/+(R) and u(t, x, y) e H[/]+I(R) for any tO.

The above results can be extended to the ollowing orm. Let us
consider

(1.5) L(t, x D)- A(t, x):::O +B(t, x)
i=1 X

where A (i= 1, ..., n) and B are N XN matrices, and assume that the
boundary a9 o 9 is compact and sufficiently smooth. For simplicity,
we assume the following conditions

(C.1) A (i=l,...,n) are Hermitian matrices,
(C.2) the boundary matrix A,==A(t, x),(x) is singular, but

its rank is constant on 9 where -(,1,,, "",,) is the exterior unit
normal to 9,

(C.3) P(t,x) isanNxN matrix, rankP=/=constantand KerP(t)
is maximally non-positive or L(t) on 9, i.e., we assume that

u.A,ugO, ueKerP, t0, xea9,
and that Ker P is not properly contained in any other subspace having

this property.
Then we have
Theorem 2. Assume that the data (x) H() and the second

member f(t, x) e (L) -(H) Y(H) satisfy the compati-

bility conditions (1.6) of order (m-l):

=1-- at
where 9()(x)=9(x) and 9(+)(x) (pO) is defined successively by the

formula

(1.7) f x)<,->(m) +(0,
Then there emists a unique solution u(t,x)
(p=O, 1, ., m), and it does not necessarily belong to Hi]+() for any

Rark. In xwell equation, we pose 7 I --0 s the bounda-
ry condition where is the exterior normM of the boundary and E is

the electric eld vector. Then this mixed problem satises the conditions

(C.1), (C.2) and (C.3). owever in this cse the property of having

finite r-norm is persistent.
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Theorem 3. In the case where 9-R+, L- 0
3/3y (a>0; a, a2 e R) and P=[1 0], the necessary and sucient con-
dition in order that the property of having finite r-norm be persistent
is c-O.

2. Proof of Theorem 1. Since the L2-well posedness is obvious
in view of [1], we prove the latter of this theorem. If 9(x,y)--t(9, )
is in HI(R) and 9(0, y)-0, then the solution u(t, x, y) is given by u(t)
=etg, which is in i(L ) 2((L)). Since the coefficients of L is con-
stant, 3u/3y(t, x, y)--eLt(39/3y) e ,(L ). From the equation it follows

x 2 y
Hence u(t, x, y) is in (H (R+)). Our purpose is to show that u(t, x,y)
does not belong to H(R) or any t0. Let us prove this by contra-
diction. For this we construct the solution u(t, x, y) concretely by using
Fourier-Laplace transform. We extend the definition domain of u to
R R by u(t, x, y)-O for x 0, and denote by (t, , ) the image of
Fourier transform of u(t, x, y), i.e.,

(2.1) (t, ,)= e-(x+)u(t, x, y)dxdy.

Then it follows

X(t , )_ i sin at. e-**(,
(2.2)

+ (co 
(t, , )- i sin at. e-(, )

(.a
+ [(cos at-- i sin

where a-+. Since

u .(t, x, Y)--I u (s,x y)ds +(x, y)

2 y2 Y 3x

1 0 1 0 (t, ,)- .(, v) + ),
Oy

(s’ x’ y)ds-
Oy Oy ox

the necessary and sufficient condition in order that u(t,x, y) be in
H(R) is

(2.)
o (’ z,) L(R), i.e., (i)g(,

Substituting (2.) into (2.4), we get



722 M. TsuzI [Vol. 48,

f:(i)t(s, $, v)ds- (i) (($, ) o sin as. e-ds

I-L. -I.
The terms I and L are easily proved to be in L(R), therefore the term
I must be in L(R). Since

:e_sinasds_1(1-cos a e_)_i:e(,._)ds
we get the following (2.6) in order to be I L(R)

(2.6) (i)(i) oa(a+)
(’ )" e"’ e L(R).

Taking account of the identity

we see that (2.6) is equivalent to

(2.7) (t, , ) (i)(i) e e L(R)
a(a+ll)

2(0’ 7) (Sign ’-)’ds

If we put l(t, )--2(2t2--2/16)/t, then for

(2.8) e(sn ’-)ds >=-.
Hence it follows

where c- 1/16t2(1+ t2)-2dt. Therefore if we take V2(x, Y) as 2(0, y)

H(RI), then F(t, , ) does not belong to L2(R2) for any t0. This is
a contradiction. Thus Theorem 1 is proved in the case m-1. For
general m we can prove by induction.

3. Proof of Theorem 2. We can prove as in [2] that this mixed
problem has a finite propagation speed. Thus by the local transfor-
mation we can reduce to the case

9=R ={(x, ..., x) (x, ..., x_) e R-, x> 0}.
Moreover, applying an appropriate transformation of unknown
functions, we have only to consider the following fairly simple mixed
problem

A(t, x)3/3x +B(t x))u+f(t x) L(t)u +f(t),(3.1)
tO, xeR,

(M)
(3.2) u(0, x)--(x), x e R,
((3.3) Pu =o-0, tO, (x, .., x_) e R-,

where (A.1) A (i=1,...,n) are NxN Hermitian matrices and A
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---[0An 001 where/n is an rr non-singular matrix, (A.2) P=[EO] is

an N matrix where E is an unit matrix, (A.3) Ker P is maxi-
mally non-positive or L(t). We remark that (A.3) assures l<_ r. Here
we treat the mixed problem (M) when L(t) is independent of t. When
L(t) depends on t, we can prove Theorem 2 by using energy inequalities
and Cauchy’s polygonal line as in [2]. Using Theorem 3.2 of Lax-
Phillips [1], we see that L generates a semi-group T(t) in L(R), rom
which the L-well posedness is proved. We pass to the problem of
regularity. Let us put v--t(u, ., u), v--t(u/, ., u), g-t(f, .,
f) and g._t(f/,...,fv), then there exist first order differential
operators L (i, ]= 1, 2) such that
(3.4)i vi/t-.Lilvl+Li2v2---gi, i--1, 2.
We see from (A.1) that L,L and L22 don’t contain the derivative with
respect to Xn. First we consider the case m--1. Then the solution
u(t, x) is given by

u(t, x) T(t)+ T(t-- s)f(s)ds

which is in ’:(L)’((L)). Let us put U(t,x)-t(tu, t3u/3t, t3u/3x,
., t3u/3Xn_), then U(t, x) satisfies

(3U/3t=LU+r(t,x)
(3.5)

[Pvl  =0=o
where

L-- . /lower order,
L

q(x)-- t(2, t(L-}-f(O)) tO
Xl OXn_l

F(t,x)_t tf,. 3t ’ xl -ffi 0

3f 3An A 0

As )(x) e L(R) and F(t, x) e t(L2), we see from (3.5) that U(t, x) is in
’(L). Therefore it 2ollows 2rom (3.4) that 8v/SXl is in 8(L). Hence
v(t, x) is in ’(Hg.

Next we pass to the case m=2. Since in (3.5) )(x) e H(R) and
F(t, x) e (H)f :(L), we can apply the result obtained now to (3.5).
Therefore, if we put V=t(tv, rSvp tSv/Sx, ., tSv/Sx_) (i=1, 2),
V(t, x) is in :(L) (H). Hence in (3.5) Lv+g is in Ct(L Cl Ct(H ).
Since v. is free o boundary condition and Ln generates a semi-group
in L(R), v(t, x)is also in ’:(L) /’t(H), which implies the required
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result in the case m--2. For general m we can prove this theorem by
induction. The method used here is essentially the same as in [2].

The detailed proof will be given in a forthcoming paper.
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