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5. On Continuation of Regular Solutions of Partial
Differential Equations with Constant Coefficients
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University of Tokyo

(Comm. by KSsaku Y0SID., M. Z. A., Jan. 12, 1973)

This is a short communication of the results of my forthcoming
paper [4]. Let (resp. ) be the sheaf of real analytic functions
(resp. that of hyperfunctions). Let p(D) be a partial differential equa-
tion with constant coefficients, and let / (resp. ) be the sheaf of
real analytic solutions (resp. that of hyperfunction solutions) of p(D)u
-0. In our earlier work [2], we have given the condition for the
operator p in order that ,(U\K)/(U)-O, where K is a compact
convex subset of R and U is one of its open convex neighborhoods.
Now let K be the intersection of a compact convex set with the open
half space {x 0} in R, and let U be one of its open convex neighbor-
hoods. Here, we employ the coordinates (x,..., x)-(x’, x) for R.
Concerning the possibility of extension of the solutions of p(D)u--O in
U\K to the whole U, we have the following results.

Theorem 1. _p(U\K) /_q3p(U)-O if and only if
HL()eII+HL\K()+C,, for e N(p), (ve0, C>0).

Here L is the closure of K in Rn, HL()--supxe Re (x, /--1} is its
supporting function and similarly for H\K() N(p) is the characteristic
variety { e C p()-0} of p.

We can easily prove that the restriction map _(U)-(U\K) is
injective. Therefore the factor space (U\K)/(U) is well defined.

Corollary 2. If _(U\K)/_q)(U)--O, then p is hyperbolic with
respect to the direction (0, ..., 0, 1). Conversely, let p be hyperbolic
to that direction. Then, for each K which is the part in {xO} of a
cone with Xn-aXis as its axis and with a sufficiently mild vertical angle,
we have (U\K)/(U)-O.

Here we mean hyperbolicity in the sense of hyperfunctions (see
[5], Definition 6.1.1). These results are obtained by cohomological
arguements for and by applying the fundamental principle for
established in [2], II. Note that the possibility of extension of hyper-
function solutions really depends on the shape of K.

As for real analytic solutions we get the following result imme-
diately form Corollary 2, when we take into account the result on
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propagation o regularity p(U\K):p(U)=p(U) ([5], Theorem
5.1.1) and the uniqueness of analytic continuation.

Theorem 3. Assume that for each irreducible component p of p
there exists a sequence of directions 0(),k-l,2,... converging to
(0, ..., 0, 1) such that p is hyperbolic to each direction (). Then we
have p(U\K)/(U) =0.

Note that this condition depends on the lower terms of p.
Apart rom hyperbolicity, we have the ollowing result.
Theorem 4. Assume that each irreducible component p of p

satisfies either of the following two conditions:
1) p satisfies the assumption of Theorem 3.
2) There exists a direction (, O) e Rn-}( R with respect to which

p is non-characteristic such that K{x e R 0, x’} :0} and any root
of p (’+0, n)=0 satisfies the estimate

lIm rl_elnl+bIIm I+C,,, or Im _0 (ve0, C,,0).
Then we have (U\K)/(U)=O.

The proo o Theorem 4, or the actors corresponding to the
condition 2), is carried out employing the representation of
(U\K)/(U) by a space o holomorphic unctions on N(p), and
applying a lemma o Phragmn-LindelS type. For a compact convex
set K, such method is exploited by Gruin [1] and developed in [2]. In
our present case, we must employ some type of actor space to represent
(U\K)/(U). Therefore we need a variant o Phragmn-LindelS’s
theorem in a relative orm. In all cases, however, our plan of proof
is definite. An intuitive interpretation or it is given in [3].

Note that the condition 2) o Theorem 4 is airly sharp: we cannot
drop the condition o thinness on K in general. In act, we have the
ollowing example: For the wave operator p(D)=3/3x--/3x-/3x
(n=3) we have the ollowing solution

1 log{( x2 )u(x, x, x)-
/v(x, x, x) v(x, x, x)

Xn +kx- 1- k

+ v(x,x,x)
+k

where

V(Xl, X2, Xn)-- X1- --X - Xn--
and 0k1 is a constant. The singularity of u agrees with the o1-
lowing hyperbola near its vertex (0, 0, (1--k)/2k),

x2=O

x x- 14k-.
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Therefore if K has a positive volume, however small, then we can give
a non-trivial element of (U\K)/(U) modifying the above solution.

Corollary 5. Assume that K is contained in the xn-axis. Then,
for any operator p(D) whose principal part does not contain 3 /3Xn we
have p(U\K)/p(U)-O.

Note that every irreducible component of p enjoys the same pro-
perty. Thus we can establish the corollary immediately by applying
Theorem 4, tking as (G, 0) any non-characteristic direction.

An illustrating example of the operators satisfying the condition
of Corollary 5 is the heat equation 3/3Xn--, of n-variables. The
corresponding result takes a very classical aspect but seems to have
been unknown. Note that concerning the heat equation we can apply
Theorem 4 directly, taking as (, 0) any direction. Thus we have
(U\K)/(U)-O for any K contained in a perpendicular hyperplane.
We further expect that K may be arbitrary in this case.

Errata. Theorem 2.4 and its consequences in my talk at the sym-
posium on "the theory of hyperfunctions and analytic functionals" at
RIMS, September 1971, should be replaced by Theorem 4 here and its
consequences.
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