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On G.Sets in the Product of a Metric Space
and a Compact Space. I

By Jun-iti NAGATA*
Department of Mathematics, University of Pittsburgh

(Comm. by Kinjir6 KUNU,GI, M. $. A., March 12, 1973)

We have proved in [8] that a topological space is paracompact
(Hausdorff) and M if and only if it is homeomorphic to a closed set of
the product of a metric space and a compact Hausdorff space. A simi-
lar characterization for general M-spaces may be obtained, but it is
still an open question whether ’M-space’ is characterized as a closed set
in the product of a metric space and a countably compact space (see [9]).
In this brief note we are going to turn our attention to G-sets in the
product of a metric space and a compact space. Although we are not
successful yet in finding an internal characterization of those sets, they
seem deeply related with A. V. Arhangelskii’s p-spaces (see [1]) as will
be seen in the following discussion. All spaces in this paper are at
least Hausdorff, and all maps (-mappings) are continuous. As for the
concept of M-space (due to K. Morita) the reader is referred to [4].
For general terminologies and symbols in general topology (see [6]).

Theorem 1. An M-space X is homemorphic to a G-set in the
product of a metric space and a compact Hausdorff space if and only
if it is a p-space.

Proof. It is known that the product of a metric space and a com-
pact Hausdorff space is paracompact and p, and it is also easy to see
that every G-set of a p-space is p. Therefore we shall prove only the
’if’ part of the theorem. Assume that X is M and p at the same time.
Then by Morita’s theorem [4] there is a quasi-perfect map f from X
onto a metric space Y. (Namely f is closed and continuous, and f-(y)
is countably compact or each y e Y.) By D. Burke’s theorem [3] there
is a sequence c-V, c-V, of open covers of X such that

(i) if x V e c, i= 1, 2, ., then K=:F is compact,
(ii) for every open set U containing K, there is k for which

(__ v v.
We may assume without loss of generality that each c( consists of
cozero open sets (=complements of zero sets of real-valued continuous
functions defined on X), because X is a Tychonoff space (which is im-
plied by the fact that X is p).
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Now we define a map g rom X into the product space fiX Y of
the Stone-(ech compactification fiX of X and Y as ollows"

g(x)--(x, f(x)), x e X.
It is quite easy to see that g is a topological map rom X onto g(X). So
all we have to prove is that g(X) is a G-set in fiX Y. Now note that
we may regard fiX as the set f all maximal filters consisting o zero
sets in X (see [6]), and put

C- {(z, y) e fiX Y If-(y) e z}.
Then we can prove that C is a G-set in fiX Y. (Actually it is a closed
G-set.) For each czero open set V o X we define an open set V- o
fiX by V--- {z e fiX IX-- V z}. We also denote by Sn(Y) the 1/n-nbd
(--neighborhood) of a point y o Y, where n is a natural number. For
each point y o Y and or each natural number n, let

Mn(Y) (f-(Sn(Y)))~ Sn(y).
Then M(y) is an open nbd o each (z, y)e C. Furthermore we put

M-- {M(y) y e Y}
to obtain an open set Mn o. fiX Y satisfying MC. Now we claim
that C= (__ M. To prove it, let (z’, y’) e fix Y-C. Then f-(y’) e z’,
i.e. there is a set F e z’ such that F f-l(y’)--. Hence y’ e f(F) in Y.
Since f(F) is a closed set, S(y’)1 f(F)--O or some natural number n.
This implies that (z’, y’) e M(y) or each y e Y, and accordingly (z’, y’)
e M. Because i p(y’, y)>= 1/3n, then y’ S(y) implying that (z’, y’)
e M(y). I. p(y’,y)l/3n, then Sn(y) f(F)--) in Y, which implies
that f-(Sn(Y)) F--O in X, and hence X-f-(Sz(y)) e z’. Therefore
z’ e (f-(Sn(y)))~, and (z’, y’) e Mn(y) ollows. Thus in any case (z’, y’)
e M(y) is proved. Finally let us prove that g(X) is a G-set in C. It
is obvious that g(X) C. Now we define subsets P of C by

P-{(z, y) e C Iz e V~ or some V e a-n}, n= 1, 2,

It is again obvious that g(X)P, n=l, 2, Since

Pn--C [U{V~x YI V e C(?n}],
it is an open set o C. Thus all we have to show is that (P g(X).
Let (z, y) e

__
P then there are V e c, n=l, 2, or which

z e= V. Hence there re F e z such that FcV, n--1,2,....
Since (z, y) e C, f-(y) e z. Therefore the collection {f-(y), F In-- 1, 2,
..} has .i.p. (-the finite intersection property). Since f-(y) is

countably cmpact, there is x e f-(y) (= F). Thus x e V e,
n-- 1,2,. .. Hence rom the property o -F it ollows that K--C= V
is compact, and {K}z has .i.p. Because i nt, then KF=) or
some F e z, and hence ((__ F) gl F= or some k. Since F V, this
implies that (n=Fn)F--, which is contradiction. Since K is
compact, and z is a maximal filter of zero sets, we can conclude that z
converges to a point p oi K. (In order words z is the filter consisting
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of all zero sets containing p.) Thus z=p in fiX and p e f-(y), where
the latter follows from the fact f-l(y) e z. Hence (z, y)----g(p) e g(X),
proving that (.P g(X). After all we have proved that g(X) is G
in C, which is G in fiX Y. Thus g(X) is G in fiX Y.

Corollary. Every paracompact M-space is homeomorphic to a
closed G-set in the product of a metric space and a compact Hausdorff
space.

Proof. In [8] we have proved that g(X) in the proof of Theorem
1 is a closed set of fiX Y if X is paracompact M. Hence this corollary
follows.

Definition. A topological space is called a G-space if it is homeo-
morphic to a G-set in the product of a metric space and a compact
Hausdorff space. Every metric space as well as every topologically
complete space in the sense of E. ech is a G-space, and every G-space
is a p-space.

Problem 1. Is every p-space a G-space?
Although a positive answer to this problem means a beautiful char-

acterization of p-space as well as of G-space, the answer will be more
likely ’no’. Then the next question is

Problem 2. Give an internal characterization of G0-space.
Theorem 1 looks like a suggestion that the answer for Problem 2

may be ’M and p’. But D. Burke [3] gave an example of a locally com-
pact Hausdorff space which is not wz/(accordingly not M). Therefore
a G-space is not necessarily M. However, K. Morita [3] proved that
if a G-set of a normal M-space is the intersection of countably many
open F-sets, then it is M. Thus we have

Problem :. Is every M and p-space homeomorphic to a G-set S
in the product of a metric space and a compact Hausdorff space such
that S is the intersection f countably many open F-sets? (It is un-
known if g(X) in the proof of Theorem 1 is such a G-set.)

Theorem 2. A metacompact Tychonoff space Y is a p-space if and
only if there is a G-space X and a compact open map f from X onto Y.
(A topological space is called metacompact if for every open cover there
is a point-finite open refinement.)

Proof. The ’if’ part follows from K. Nagami’s theorem [5] which
implies that the compact open image of a p-space is p provided it is
metacompact and Tychonoff. The ’only if’ part will be proved as fol-
lows. Let Y be metacompact and p. Then Y has a sequence

of open covers satisfying the condition of Burke’s theorem. We
may assume that each c(? is a point-finite open cover consisting of
cozero open sets. Let c(?-{Vla e.A}, i=1,2, ..., and define a subset
X of the product space YN(A) as follows, where N(A) denotes the
Baire’s zerodimensional space, i.e. the countable product of the copies
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of the discrete space A.
X-{(y, (al, a2, ...)) e YN(A)Iy e VIV ...}.

We define a map f rom X onto Y by
f(y, (al, a2, ...))=y for (y, (1, a2, "")) e X.

It is obvious that f is a continuous open map. The compactness of f
is obtained by a rather routine method of proof (see, for example, [7]),
because each c(? is point-finite. Now put

M- {(1, a., e N(A) V,I gl V :=/=: )}.
Then we can prove that X is a G-set in flY M. For each (a, a,...)
e M, we put

P(a, a2, ., a) (V g V,)- N(al, ., a),
where N(a, ..., a)= {(fl, fl, ...) e MI=a, ..., fl=a}. Furthermore
we let

Pi-- U (P(I, ..., ai) (al, a, ...) e M}.
Then each P is an open set o flY M such that PX. To prove X
--.=P, let p--(z,(a,o, ...))eYM-X. If ze Y, then zeV. V for some n Therefore p e P(al ). Since it is obvious
that ,p e P(fl, ..., fin) or (, ..., fin) different from (a, ..., ), p
follows. If z e flY--Y, then there is F e z such that F ((=1
because the compactness o = ollows rom that
Hence F (i\1 Vi)-=O or some n. Thus Y-(\I V, e z, implying

y .that ze(V., ,). Namely peP(a,. n) Again peP(fl,
", fin) is obvious if (ill, ..., fln):/:(a, "", an), and hence p e Pn. After

all X=

__
P is concluded.

Problem 4, Characterize the compact open images o G-spaces.
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