39. On G_∂-Sets in the Product of a Metric Space and a Compact Space. I

By Jun-iti NAGATA^{*)} Department of Mathematics, University of Pittsburgh (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1973)

We have proved in [8] that a topological space is paracompact (Hausdorff) and M if and only if it is homeomorphic to a closed set of the product of a metric space and a compact Hausdorff space. A similar characterization for general M-spaces may be obtained, but it is still an open question whether 'M-space' is characterized as a closed set in the product of a metric space and a countably compact space (see [9]). In this brief note we are going to turn our attention to G_s -sets in the product of a metric space and a compact space. Although we are not successful yet in finding an internal characterization of those sets, they seem deeply related with A. V. Arhangelskii's p-spaces (see [1]) as will be seen in the following discussion. All spaces in this paper are at least Hausdorff, and all maps (=mappings) are continuous. As for the concept of M-space (due to K. Morita) the reader is referred to [4]. For general terminologies and symbols in general topology (see [6]).

Theorem 1. An M-space X is homemorphic to a G_{δ} -set in the product of a metric space and a compact Hausdorff space if and only if it is a p-space.

Proof. It is known that the product of a metric space and a compact Hausdorff space is paracompact and p, and it is also easy to see that every G_s -set of a p-space is p. Therefore we shall prove only the 'if' part of the theorem. Assume that X is M and p at the same time. Then by Morita's theorem [4] there is a quasi-perfect map f from Xonto a metric space Y. (Namely f is closed and continuous, and $f^{-1}(y)$ is countably compact for each $y \in Y$.) By D. Burke's theorem [3] there is a sequence $\mathcal{O}_1, \mathcal{O}_2, \cdots$ of open covers of X such that

- (i) if $x \in V_i \in \mathbb{C}V_i$, $i=1, 2, \dots$, then $K = \bigcap_{i=1}^{\infty} \overline{V}_i$ is compact,
- (ii) for every open set U containing K, there is k for which $\bigcap_{i=1}^{k} \overline{V}_{i} \subset U$.

We may assume without loss of generality that each \mathbb{CV}_i consists of cozero open sets (=complements of zero sets of real-valued continuous functions defined on X), because X is a Tychonoff space (which is implied by the fact that X is p).

^{*)} Supported by NSF Grant GP29401.

Now we define a map g from X into the product space $\beta X \times Y$ of the Stone-Čech compactification βX of X and Y as follows:

$$g(x) = (x, f(x)), \qquad x \in X.$$

It is quite easy to see that g is a topological map from X onto g(X). So all we have to prove is that g(X) is a G_{δ} -set in $\beta X \times Y$. Now note that we may regard βX as the set of all maximal filters consisting of zero sets in X (see [6]), and put

$$C = \{(z, y) \in \beta X \times Y \mid f^{-1}(y) \in z\}.$$

Then we can prove that C is a G_{δ} -set in $\beta X \times Y$. (Actually it is a closed G_{δ} -set.) For each cozero open set V of X we define an open set V^{\sim} of βX by $V^{\sim} = \{z \in \beta X | X - V \notin z\}$. We also denote by $S_n(y)$ the 1/n-nbd (=neighborhood) of a point y of Y, where n is a natural number. For each point y of Y and for each natural number n, let

$$M_n(y) = (f^{-1}(S_n(y)))^{\sim} \times S_n(y).$$

Then $M_n(y)$ is an open nbd of each $(z, y) \in C$. Furthermore we put $M_n = \bigcup \{M_n(y) | y \in Y\}$

to obtain an open set M_n of $\beta X \times Y$ satisfying $M_n \supset C$. Now we claim that $C = \bigcap_{n=1}^{\infty} M_n$. To prove it, let $(z', y') \in \beta X \times Y - C$. Then $f^{-1}(y') \notin z'$, i.e. there is a set $F \in z'$ such that $F \cap f^{-1}(y') = \emptyset$. Hence $y' \notin f(F)$ in Y. Since f(F) is a closed set, $S_n(y') \cap f(F) = \emptyset$ for some natural number n. This implies that $(z', y') \notin M_{3n}(y)$ for each $y \in Y$, and accordingly (z', y') $\notin M_{3n}$. Because if $\rho(y', y) \ge 1/3n$, then $y' \notin S_{3n}(y)$ implying that (z', y') $\notin M_{3n}(y)$. If $\rho(y', y) < 1/3n$, then $S_{3n}(y) \cap f(F) = \emptyset$ in Y, which implies that $f^{-1}(S_{3n}(y)) \cap F = \emptyset$ in X, and hence $X - f^{-1}(S_{3n}(y)) \in z'$. Therefore $z' \notin (f^{-1}(S_{3n}(y)))^{\sim}$, and $(z', y') \notin M_{3n}(y)$ follows. Thus in any case (z', y') $\notin M_{3n}(y)$ is proved. Finally let us prove that g(X) is a G_{δ} -set in C. It is obvious that $g(X) \subset C$. Now we define subsets P_n of C by

 $P_n = \{(z, y) \in C \mid z \in V^{\sim} \text{ for some } V \in \mathcal{CV}_n\}, \qquad n = 1, 2, \cdots.$ It is again obvious that $g(X) \subset P_n, n = 1, 2, \cdots$. Since $P_n = C \cap [\cup \{V^{\sim} \times Y \mid V \in \mathcal{CV}_n\}],$

it is an open set of C. Thus all we have to show is that $\bigcap_{n=1}^{\infty} P_n \subset g(X)$. Let $(z, y) \in \bigcap_{n=1}^{\infty} P_n$; then there are $V_n \in \mathcal{V}_n$, $n=1,2,\cdots$ for which $z \in \bigcap_{n=1}^{\infty} V_n$. Hence there are $F_n \in z$ such that $F_n \subset V_n$, $n=1,2,\cdots$. Since $(z, y) \in C$, $f^{-1}(y) \in z$. Therefore the collection $\{f^{-1}(y), F_n | n=1, 2, \cdots\}$ has f.i.p. (=the finite intersection property). Since $f^{-1}(y)$ is countably compact, there is $x \in f^{-1}(y) \cap (\bigcap_{n=1}^{\infty} F_n)$. Thus $x \in V_n \in \mathcal{V}_n$, $n=1,2,\cdots$. Hence from the property of \mathcal{V}_n it follows that $K = \bigcap_{n=1}^{\infty} \overline{V}_n$ is compact, and $\{K\} \cup z$ has f.i.p. Because if not, then $K \cap F = \emptyset$ for some $F \in z$, and hence $(\bigcap_{n=1}^k \overline{V}_n) \cap F = \emptyset$ for some k. Since $F_n \subset V_n$, this implies that $(\bigcap_{n=1}^k F_n) \cap F = \emptyset$, which is a contradiction. Since K is compact, and z is a maximal filter of zero sets, we can conclude that z converges to a point p of K. (In order words z is the filter consisting of all zero sets containing p.) Thus z=p in βX and $p \in f^{-1}(y)$, where the latter follows from the fact $f^{-1}(y) \in z$. Hence $(z, y) = g(p) \in g(X)$, proving that $\bigcap_{n=1}^{\infty} P_n \subset g(X)$. After all we have proved that g(X) is G_{δ} in C, which is G_{δ} in $\beta X \times Y$. Thus g(X) is G_{δ} in $\beta X \times Y$.

Corollary. Every paracompact M-space is homeomorphic to a closed G_{δ} -set in the product of a metric space and a compact Hausdorff space.

Proof. In [8] we have proved that g(X) in the proof of Theorem 1 is a closed set of $\beta X \times Y$ if X is paracompact M. Hence this corollary follows.

Definition. A topological space is called a G_{δ} -space if it is homeomorphic to a G_{δ} -set in the product of a metric space and a compact Hausdorff space. Every metric space as well as every topologically complete space in the sense of E. Čech is a G_{δ} -space, and every G_{δ} -space is a *p*-space.

Problem 1. Is every *p*-space a G_{δ} -space?

Although a positive answer to this problem means a beautiful characterization of *p*-space as well as of G_{δ} -space, the answer will be more likely 'no'. Then the next question is

Problem 2. Give an internal characterization of G_{δ} -space.

Theorem 1 looks like a suggestion that the answer for Problem 2 may be 'M and p'. But D. Burke [3] gave an example of a locally compact Hausdorff space which is not $w \varDelta$ (accordingly not M). Therefore a G_{δ} -space is not necessarily M. However, K. Morita [3] proved that if a G_{δ} -set of a normal M-space is the intersection of countably many open F_{σ} -sets, then it is M. Thus we have

Problem 3. Is every M and p-space homeomorphic to a G_{δ} -set S in the product of a metric space and a compact Hausdorff space such that S is the intersection of countably many open F_{σ} -sets? (It is unknown if g(X) in the proof of Theorem 1 is such a G_{δ} -set.)

Theorem 2. A metacompact Tychonoff space Y is a p-space if and only if there is a G_{a} -space X and a compact open map f from X onto Y. (A topological space is called metacompact if for every open cover there is a point-finite open refinement.)

Proof. The 'if' part follows from K. Nagami's theorem [5] which implies that the compact open image of a *p*-space is *p* provided it is metacompact and Tychonoff. The 'only if' part will be proved as follows. Let Y be metacompact and *p*. Then Y has a sequence CV_1, CV_2 , \cdots of open covers satisfying the condition of Burke's theorem. We may assume that each CV_i is a point-finite open cover consisting of cozero open sets. Let $CV_i = \{V_{\alpha}^i | \alpha \in A\}, i=1, 2, \cdots$, and define a subset X of the product space $Y \times N(A)$ as follows, where N(A) denotes the Baire's zerodimensional space, i.e. the countable product of the copies of the discrete space A.

 $X = \{(y, (\alpha_1, \alpha_2, \cdots)) \in Y \times N(A) \mid y \in V^1_{\alpha_1} \cap V^2_{\alpha_2} \cap \cdots \}.$ We define a map f from X onto Y by

 $f(y, (\alpha_1, \alpha_2, \cdots)) = y$ for $(y, (\alpha_1, \alpha_2, \cdots)) \in X$.

It is obvious that f is a continuous open map. The compactness of f is obtained by a rather routine method of proof (see, for example, [7]), because each \mathbb{CV}_i is point-finite. Now put

 $M = \{ (\alpha_1, \alpha_2, \cdots) \in N(A) \mid V_{\alpha_1}^1 \cap V_{\alpha_2}^2 \cap \cdots \neq \emptyset \}.$

Then we can prove that X is a G_{δ} -set in $\beta Y \times M$. For each $(\alpha_1, \alpha_2, \cdots) \in M$, we put

 $P(\alpha_1, \alpha_2, \dots, \alpha_i) = (V_{\alpha_1}^1 \cap \dots \cap V_{\alpha_1}^i)^{\sim} \times N(\alpha_1, \dots, \alpha_i),$ where $N(\alpha_1, \dots, \alpha_i) = \{(\beta_1, \beta_2, \dots) \in M | \beta_1 = \alpha_1, \dots, \beta_i = \alpha_i\}.$ Furthermore we let

 $P_i = \bigcup \{ P(\alpha_1, \cdots, \alpha_i) | (\alpha_1, \alpha_2, \cdots) \in M \}.$

Then each P_i is an open set of $\beta Y \times M$ such that $P_i \supset X$. To prove $X = \bigcap_{i=1}^{\infty} P_i$, let $p = (z, (\alpha_1, \alpha_2, \cdots)) \in \beta Y \times M - X$. If $z \in Y$, then $z \notin V_{\alpha_1}^1 \cap \cdots \cap V_{\alpha_n}^n$ for some n. Therefore $p \notin P(\alpha_1, \cdots, \alpha_n)$. Since it is obvious that $p \notin P(\beta_1, \cdots, \beta_n)$ for $(\beta_1, \cdots, \beta_n)$ different from $(\alpha_1, \cdots, \alpha_n), p \notin P_n$ follows. If $z \in \beta Y - Y$, then there is $F \in z$ such that $F \cap (\bigcap_{i=1}^{\infty} \overline{V}_{\alpha_i}^i) = \emptyset$, because the compactness of $\bigcap_{i=1}^{\infty} \overline{V}_{\alpha_i}^i$ follows from that $\bigcap_{i=1}^{\infty} V_{\alpha_i}^i \neq \emptyset$. Hence $F \cap (\bigcap_{i=1}^n \overline{V}_{\alpha_i}^i) = \emptyset$ for some n. Thus $Y - \bigcap_{i=1}^n V_{\alpha_i}^i \in z$, implying that $z \notin (V_{\alpha_1}^1 \cap \cdots \cap V_{\alpha_n}^n)^{\sim}$. Namely $p \notin P(\alpha_1, \cdots, \alpha_n)$. Again $p \notin P(\beta_1, \cdots, \beta_n)$ is obvious if $(\beta_1, \cdots, \beta_n) \neq (\alpha_1, \cdots, \alpha_n)$, and hence $p \notin P_n$. After all $X = \bigcap_{i=1}^{\infty} P_i$ is concluded.

Problem 4. Characterize the compact open images of G_{δ} -spaces.

References

- A. V. Arhangelskii: Mappings and spaces. Russian Mathematical Surveys, 21, 115-162 (1966).
- [2] D. K. Burke: On p-spaces and w4-spaces. Pacific J. Math., 35, 285-296 (1970).
- [3] K. Morita: Some properties of M-spaces. Proc. Japan Acad., 43, 869-872 (1967).
- [4] ——: A survey of the theory of M-spaces. General Topology and its Applications, 1, 49-55 (1971).
- [5] K. Nagami: Minimal class generated by open compact and perfect mappings (to appear).
- [6] J. Nagata: Modern General Topology. Amsterdam-Groningen (1968).
- [7] ——: Mappings and M-spaces. Proc. Japan Acad., 45, 140-144 (1969).
- [8] —: A note on M-space and topologically complete space. Proc. Japan Acad., 45, 541-543 (1969).
- [9] ——: Problems on generalized metric spaces. Proc. Emory Topology Conference, 63-70 (1970).