35. Two Theorems on Mix-Relativization

By Nobuyoshi Motohashi
Department of Mathematics, Gakushuin University, Tokyo
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1973)

In this paper we shall consider "relativization by a set of unary predicate symbols" and state two theorems about it, which can be considered as extensions of the usual relativization theorem (cf. Motohashi [2]) and one sorted reductions of Feferman's many sorted interpolation theorems (Theorem 4.2 and Theorem 4.4 in Feferman [1]). The key ideas of our proofs of these theorems have already been appeared in [2] although their proofs themselves will be omitted in this paper, and details will be published elsewhere.

Let L be a first order finitary or infinitary logic ($L_{\omega \omega}$ or $L_{\omega_{1 \omega}}$ in [1]), $\boldsymbol{U}=\left\{U_{i}\right\}_{i \in I}$ a set of unary predicate symbols which do not appear in L and L the first order logic obtained from L by adding every predicate symbol in \boldsymbol{U}. For the sake of covenience, we assume that L has neither individual constant symbols nor function symbols. Let A be a formula in L and B in L. Then we say that " A is a mix-relativization formula of B (by \boldsymbol{U})" or " A is obtained from B through mix-relativization (by U)" if A is obtained from B by relativization some occurrences of quantifiers of B by predicate symbols in \boldsymbol{U}. If every occurrence of quantifiers in B is relativized by a predicate symbol in \boldsymbol{U}, we say that A is a total mix-relativization formula of B. For example, the formula $(\forall u)\left(U_{i}(u) \supset(\exists v)\left(U_{j}(v) \wedge C(u, v)\right)\right.$ is a mix-relativization formula of $(\forall u)$ ($\exists v) C(u, v)$, where $i, j \in I$ and $C(x, y)$ is a formula in L. Moreover if $C(x, y)$ has no occurrence of quantifiers, then that formula is a total mix-relativization formula of $(\forall u)(\exists v) C(u, v)$. If A is a (total) mixrelativization formula of a formula in L, we simply say that A is a (total) mix-relativization formula. For each mix-relativization formula A, let $I(A), U_{n}(A)$ and $E_{x}(A)$ be the set of all $i \in I$ such that U_{i} appears in A, the set of all $i \in I$ such that U_{i} appear negatively in A and the set of all $i \in I$ such that U_{i} appear positively in A respectively (cf. [1]). Hence $I(A)=U_{n}(A) \cup E_{x}(A)$. For example, if A is the formula above mentioned, then $U_{n}(A)=\{i\}$ and $E_{x}(A)=\{j\}$. Notice that if A is a formula in L, then A is a mix-relativization formula and $I(A)=U_{n}(A)$ $=E_{x}(A)=\phi . \quad$ Also if A is a total mix-relativization formula of B and $I(A)=\{i\}$, then $A=B^{U_{i}}$, i.e. A is the relativization formula of B by U_{i} in the usual sense. Then we have the following two theorems.

Theorem I. Suppose I_{0} and I_{1} are subsets of I, A and B are total
mix-relativization formulas and $\left\{x_{i}\right\}_{i \in I_{1}}$ is a set of free variables such that every free variable which occurs either in A or in B belongs to it.

If $\left\{(\exists u) U_{i}(u)\right\}_{i \in I_{0}},\left\{U_{i}\left(x_{i}\right)\right\}_{i \in I_{1}} \vdash_{L} A \supset B$, then there is a total mixrelativization formula C in L satisfying the following four conditions 1)-4) :
1)

$$
\left\{(\exists u) U_{i}(u)\right\}_{i \in I_{0}}, \quad\left\{U_{i}\left(x_{i}\right)\right\}_{i \in I_{1}} \vdash_{L} \quad A \supset C
$$

and

$$
\left\{(\exists u) U_{i}(u)\right\}_{i \in I_{0}}, \quad\left\{U_{i}\left(x_{i}\right)\right\}_{i \in I_{1}} \vdash_{L} \quad C \supset E .
$$

2) Every predicate symbol of C in L except $U_{i}, i \in I_{1}$, occurs both in A and in B.
3) Every free variable of C belongs to $\left\{x_{i}\right\}_{i \in I_{1}}$.
4)

$$
U_{n}(C) \subseteq U_{n}(A) \text { and } E_{x}(C) \subseteq E_{x}(B)
$$

Theorem II. Suppose I_{0} and I_{1} are subsets of I, A is a total mixrelativization formula, B is a mix-relativization formula and, $\left\{y_{i}\right\}_{i \in I_{0}}$ and $\left\{x_{i}\right\}_{i \in I_{1}}$ are two sets of free variables such that every free variable in A belongs to $\left\{x_{i}\right\}_{i \in I_{1}}$.

If $\left\{(\exists u) U_{i}(u)\right\}_{i \in I_{0}},\left\{U_{i}\left(x_{i}\right)\right\}_{i \in I_{1}} \vdash_{L} A \supset B$, then there is a total mixrelativization formula C in L satisfying the following four conditions 5)-8) :
5) $\quad\left\{U_{i}\left(y_{i}\right)\right\}_{i \in I_{0}}, \quad\left\{U_{i}\left(x_{i}\right)\right\}_{i \in I_{1}} \vdash_{L} \quad A \supset C$ and

$$
\left\{U_{i}\left(y_{i}\right)\right\}_{i \in I_{0}}, \quad\left\{U_{i}\left(x_{i}\right)\right\}_{i \in I_{1}} \vdash_{L} \quad C \supset B .
$$

6) Every predicate symbol of C in L occurs both in A and in B.
7) Every free variable of C belongs to $\left\{y_{i}\right\}_{i \in I_{0}} \cup\left\{x_{i}\right\}_{i \in I_{1}}$.
8) $\quad U_{n}(C) \subseteq U_{n}(B)$ and $E_{x}(C) \subseteq E_{x}(A)$.

If $\Gamma, U_{i}(x) \vdash_{L} A(x) \supset B$ and x appears neither in Γ nor in B, then $\Gamma \vdash_{L}(\exists u)\left(U_{i}(u) \wedge A(u)\right) \supset B$. Notice that $U_{n}\left((\exists u)\left(U_{i}(u) \wedge A(u)\right)\right)$ $=U_{n}(A(x))$ but $E_{x}\left((\exists u)\left(U_{i}(u) \wedge A(u)\right)=E_{x}(A(x)) \cup\{i\}\right.$. If $\Gamma, U_{i}(x) \vdash_{L}$ $A \supset B(x)$ and x appears neither in Γ nor in A, then $\Gamma \vdash_{L} A \supset(\forall u)\left(U_{i}(u)\right.$ $\supset B(u))$. Notice that $E_{x}\left((\forall u)\left(U_{i}(u) \supset B(u)\right)\right)=E_{x}(B(x))$ but $U_{n}((\forall u)$ $\left.\left(U_{i}(u) \supset B(u)\right)\right)=U_{n}(B(x)) \cup\{i\}$. These two facts show us that in Theorem I we can add the condition that every free variable of C occurs both in A and in B but can not in Theorem II.

Remark 1. Let D and E be sentences in L and $U \in U$. Suppose $(\exists u) U(u) \vdash_{L} D^{U} \supset E$. Then by Theorem II, we have a sentence C in L such that $(\exists u) U(u) \vdash{ }_{L} D^{U} \supset C^{U}$, $(\exists u) U(u) \vdash{ }_{L} C^{U} \supset E$ and $U_{n}\left(C^{U}\right) \subseteq U_{n}(E)$ $=\phi$. This means that C is an existential sentence and" $\vdash_{L} D \supset C$ " and " $\vdash_{L} C \supset E$ " hold. This is the usual relativization theorem (cf. [2]).

Remark 2. We use Feferman's terminology in [1]. Let L_{m} be a many sorted logic and, A and B are two sentences in L_{m} such that " $\vdash_{L_{m}} A \supset B$ " holds. Let A^{*} and B^{*} be their one sorted reductions in L, hence we can consider A^{*} and B^{*} as two mix-relativization sentences in
L. Let $I_{0}=I\left(A^{*}\right) \cup I\left(B^{*}\right)$. Then we have

$$
\left\{(\exists u) U_{i}(u)\right\}_{i \in I_{0}} \vdash_{L} A^{*} \supset B^{*} .
$$

By Theorem I, there is a total mix-relativization sentence C_{1} satisfying 1)-4) in Theorem I. Since C_{1} is a total mix-relativization, $C_{1}=C^{*}$ for some sentence C in L_{m}. This C satisfies: (i) every predicate in C occurs both in A and in B, (ii) $\vdash_{L_{m}} A \supset C$ and $\vdash_{L_{m}} C \supset B$, (iii) $U_{n}(C) \subseteq U_{n}(A)$ and $E_{x}(C) \subseteq E_{x}(B)$. This is the Feferman's many sorted interpolation theorem, i.e. Theorem 4.2 in [1].

Remark 3. Suppose A and B are sentences in a many sorted logic L_{m} and $I_{0} \subseteq I$. If $\vdash_{L_{m}} A \supset B, E_{x}(A) \subseteq I_{0}$ and $U_{n}(B) \subseteq I_{0}$, then by Theorem II, we have a formula C in L_{m} satisfying: (i) $\vdash_{L_{m}} A \supset C$ and $\vdash_{L_{m}} C \supset B$, (ii) $U_{n}(C) \subseteq I_{0}$ and $E_{x}(C) \subseteq I_{0}$. This is Theorem 4.4 in [1].

References

[1] S. Feferman: Lectures on Proof Theory. Proceedings of the Summer School in Logic, Leeds (1967). Lecture Notes in Math. No. 70, SpringerVerlag, 1-107 (1968).
[2] N. Motohashi: An extended relativization theorem (to appear in J. Math. Soc. Japan, 25 (1973)) .

