55. A Remark on the Normal Expectations. II

By Marie CHODA

Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1973)

1. In the previous note [3], the concept of generalized channels is introduced. In the note [2], it is proved that, for a von Neumann algebra and a von Neumann subalgebra of it, the conjugate mapping of a generalized channel with a certain property is a normal expectation.

In this note, we shall show that a generalized channel is considered a normal expectation.

2. Consider a von Neumann algebra \mathcal{A} , denote the conjugate space of \mathcal{A} as \mathcal{A}^* and the subconjugate space of all ultra-weakly continuous linear functionals on \mathcal{A} as \mathcal{A}_* , following after the definition of Dixmier [4].

Definition (cf. [3]). Let \mathcal{A} and \mathcal{B} be two von Neumann algebras, then a positive linear mapping π of \mathcal{A}_* into \mathcal{B}_* is called a *generalized* channel if π maps a normal state to a normal state.

The following proposition is obtained in [3]:

Proposition 1. A positive linear mapping π of \mathcal{A}_* into \mathcal{B}_* is a generalized channel if and only if the conjugate mapping π^* is a positive normal linear mapping of \mathcal{B} into \mathcal{A} preserving the identity.

In the sequel, according to this proposition, a normal positive linear mapping of a von Neumann algebra into a von Neumann algebra preserving the identity will be called also a generalized channel.

Let \mathcal{A} be a von Neumann algebra and \mathcal{B} a von Neumann subalgebra of \mathcal{A} , then a positive linear mapping e of \mathcal{A} onto \mathcal{B} is called an *expectation* of \mathcal{A} onto \mathcal{B} if e satisfies the following conditions:

(i) $1^{e}=1$, and

(ii) $(BAC)^e = BA^eC$ for all $A \in \mathcal{A}$ and $B, C \in \mathcal{B}$, cf. [5].

The following proposition is proved in [2]:

Proposition 2. Let \mathcal{A} be a von Neumann algebra and \mathcal{B} a von Neumann subalgebra of \mathcal{A} , then a mapping π of \mathcal{B}_* to \mathcal{A}_* is a generalized channel with

(1) $\pi L_B = L_B \pi$ for any $B \in \mathcal{B}$ if and only if the conjugate mapping e of \mathcal{A} onto \mathcal{B} is a normal expectation, where a mapping L_A on \mathcal{A}^* is defined for $A \in \mathcal{A}$ by (2) $L_A f(X) = f(AX)$ for all $f \in \mathcal{A}^*$ and $X \in \mathcal{A}$.

Let $\mathcal{A} \otimes \mathcal{B}$ be the tensor product of von Neumann algebras \mathcal{A} and

 \mathcal{B} . We shall identify $\mathcal{A} \otimes 1$ (resp. $1 \otimes \mathcal{B}$) with \mathcal{A} (resp. \mathcal{B}).

Theorem 1. Let $\mathcal{A} \otimes \mathcal{B}$ be the tensor product of von Neumann algebras \mathcal{A} and \mathcal{B} . Let π be a generalized channel of \mathcal{A} (resp. \mathcal{B}) to \mathcal{B} (resp. \mathcal{A}) and ψ (resp. φ) a normal state on \mathcal{A} (resp. \mathcal{B}). Then there exists a normal expectation e (resp. ε) of $\mathcal{A} \otimes \mathcal{B}$ to \mathcal{B} (resp. \mathcal{A}) such that

$$e(A \otimes B) = \varphi(\pi(A))B \text{ (resp. } \varepsilon (A \otimes B) = \psi(\pi(B))A)$$

for $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Proof. Denote by $g \otimes f$ a ultra-weakly continuous linear functional on $\mathcal{A} \otimes \mathcal{B}$ for $g \in \mathcal{A}_*$ and $f \in \mathcal{B}_*$ such that

 $g \otimes f(A \otimes B) = g(A)f(B)$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$,

cf. [2; p. 64]. Since $\varphi \circ \pi$ is a normal state, we can define a mapping e_* of \mathcal{B}_* to $(\mathcal{A} \otimes \mathcal{B})_*$ by the following:

$$e_*(f) = \varphi \circ \pi \otimes f$$
 for every $f \in \mathcal{B}_*$.

If f is a normal state on \mathcal{B} , then $e_*(f)$ is also. It implies that e_* is a generalized channel of \mathcal{B}_* to $(\mathcal{A} \otimes \mathcal{B})_*$. It is clear that

 $e_*L_B(f)(A\otimes C) = \varphi \circ \pi(A)f(BC) = L_Be_*(f)(A\otimes C)$

for $f \in \mathcal{B}_*$, $A \in \mathcal{A}$ and $B, C \in \mathcal{B}$. Therefore, by Proposition 2, the conjugate mapping e of e_* is a normal expectation of $\mathcal{A} \otimes \mathcal{B}$ onto \mathcal{B} . By the definition of e, it is clear that e satisfies

 $e(A\otimes B) = \varphi(\pi(A))B$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

The argument for ε goes similarly.

Take and fix a normal state φ on \mathcal{A} . Put $\pi(A) = \varphi(A) \cdot 1$ for each $A \in \mathcal{A}$ and the identity 1 of \mathcal{B} , then π is a generalized channel of \mathcal{A} to \mathcal{B} . Therefore the theorem implies the following

Corollary 2. Let $\mathcal{A} \otimes \mathcal{B}$ be the tensor product of von Neumann algebras \mathcal{A} and \mathcal{B} . Then each normal state φ on \mathcal{A} (resp. ψ on \mathcal{B}) induces a normal expectation e of $\mathcal{A} \otimes \mathcal{B}$ onto \mathcal{B} (resp. \mathcal{A}) such that

 $e(A \otimes B) = \varphi(A)B$ (resp. $e(A \otimes B) = \psi(B)A$).

3. In this section, we shall discuss a completely positive linear mapping. A positive linear mapping π of a von Neumann algebra \mathcal{A} to a von Neumann algebra \mathcal{B} is called *completely positive* in the sense of Stinespring [6] (*positive definite* in the sense of Umegaki [7]), if $\pi(n)$, defined by

$$\pi(n)(A_{ij}) = (\pi(A_{ij})),$$

is positive on the $n \times n$ matrix algebra over \mathcal{A} , for every n.

Lemma 3. Let \mathcal{A} be a von Neumann algebra, \mathcal{B} an abelian von Neumann algebra and π a completely positive linear mapping of \mathcal{A} to \mathcal{B} preserving the identity. Then every state ψ on \mathcal{B} induces a state φ on $\mathcal{A} \otimes \mathcal{B}$ such that

$$\varphi(A \otimes B) = \psi(\pi(A)B)$$

for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

No. 4]

M. CHODA

[Vol. 49,

Proof. Let $\mathcal{A} \odot \mathcal{B}$ be the algebraic tensor product of \mathcal{A} and \mathcal{B} , and ψ a state on \mathcal{B} . Put

$$\varphi\left(\sum_{i=1}^{n} A_i \otimes B_i\right) = \sum_{i=1}^{n} \psi(\pi(A_i)B_i),$$

for all

$$\sum_{i=1}^{n} A_{i} \otimes B_{i} \in \mathcal{A} \odot \mathcal{B}.$$

By the definition of the algebraic tensor product, φ is well-defined.

Let π_{ψ} be the representation of \mathcal{B} on a Hilbert space \mathfrak{H}_{ψ} induced by a positive linear functional ψ of \mathcal{B} . Put

$$U = \sum_{i=1}^{n} A_i \otimes B_i \in \mathcal{A} \odot \mathcal{B}.$$

Let $x \in \mathfrak{H}_{\psi}$ be the cyclic vector with

$$\psi(T) = (\pi_{\psi}(T)x, x)$$

for any
$$T \in \mathcal{B}$$
. Then we have

$$\varphi(U^*U) = \sum_{i,j} \psi(\pi(A_i^*A_j)B_i^*B_j)$$

$$= \sum_{i,j} (\pi_{\psi}(\pi(A_i^*A_j)B_i^*B_j)x, x)$$

$$= \sum_{i,j} (\pi_{\psi}(\pi(A_i^*A_j))\pi_{\psi}(B_j)x, \pi_{\psi}(B_i)x).$$

Since π_{ψ} and π are completely positive, the composition $\pi_{\psi} \circ \pi$ is completely positive too, and so φ is positive. It is clear that φ is linear and $\varphi(1)=1$. Therefore φ is a state on $\mathcal{A} \odot \mathcal{B}$, and there exists a state on $\mathcal{A} \otimes \mathcal{B}$ which is the extension of φ . Denote by the same notation φ the extension, then we have a state φ on $\mathcal{A} \otimes \mathcal{B}$ such that

 $\varphi(A \otimes B) = \psi(\pi(A)B)$ for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Remark. By a theorem of Arveson [1; Proposition 1.2.2], the hypothesis of the complete positivity of the mapping is reduced to the positivity since every positive linear mapping of a C^* -algebra into an abelian C^* -algebra is automatically completely positive.

Let \mathcal{B} be a von Neumann subalgebra of a von Neumann algebra \mathcal{A} . Following after the definition of Umegaki [8], a normal state φ on \mathcal{A} is called a \mathcal{B} -tracelet if φ satisfies

(3) $\varphi(AB) = \varphi(BA)$ for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Umegaki proved in [8]:

Theorem A. Let \mathcal{A} be a von Neumann algebra and \mathcal{B} a von Neumann subalgebra of \mathcal{A} . For any faithful \mathcal{B} -tracelet φ , there exists a normal expectation e of \mathcal{A} onto \mathcal{B} such that

(4) $\varphi(A) = \varphi(e(A))$ for every $A \in \mathcal{A}$.

Now, we shall show the following theorem:

Theorem 4. Let \mathcal{A} be a von Neumann algebra, \mathcal{B} a σ -finite abelian von Neumann algebra and π a positive linear mapping of \mathcal{A} to \mathcal{B} preserving the identity. Then there exists an expectation e of $\mathcal{A} \otimes \mathcal{B}$ onto $1 \otimes \mathcal{B}$ such that $e(A \otimes 1) = 1 \otimes \pi(A)$.

No. 4]

Proof. Let ψ be a faithful normal state on \mathcal{B} . By Lemma 3, there exists a state φ on $\mathcal{A} \otimes \mathcal{B}$ such that

 $\varphi(A \otimes B) = \psi(\pi(A)B)$ for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Denote by σ the vector state on $\pi_{\varphi}(\mathcal{A}\otimes\mathcal{B})$ induced by φ , that is, σ is the faithful normal state on $\pi_{\varphi}(\mathcal{A}\otimes\mathcal{B})$ with $\sigma(\pi_{\varphi}(T))=\varphi(T)$. Since \mathcal{B} is abelian, $1\otimes\mathcal{B}$ is contained in the center of $\mathcal{A}\otimes\mathcal{B}$, so $\pi_{\varphi}(1\otimes\mathcal{B})$ is contained in the center of $\pi_{\varphi}(\mathcal{A}\otimes\mathcal{B})$. Therefore, σ is a faithful $\pi_{\varphi}(1\otimes\mathcal{B})$ -tracelet. By Theorem A, there exists a normal expectation ε of $\pi_{\varphi}(\mathcal{A}\otimes\mathcal{B})$ onto $\pi_{\varphi}(1\otimes\mathcal{B})$. On the other hand, φ is faithful on $1\otimes\mathcal{B}$ by the property of ψ , so π_{φ} is an isomorphism of $1\otimes\mathcal{B}$ onto $\pi_{\varphi}(1\otimes\mathcal{B})$. Let π_{φ}^{-1} be the inverse of π_{φ} of $\pi_{\varphi}(1\otimes\mathcal{B})$ onto $1\otimes\mathcal{B}$. Put $e=\pi_{\varphi}^{-1}\circ\varepsilon\circ\pi_{\varphi}$, then e is an expectation of $\mathcal{A}\otimes\mathcal{B}$ onto $1\otimes\mathcal{B}$. By (4) of ε and the definition of e, we have the following equalities:

$$\begin{split} \varphi(e(A \otimes 1)(1 \otimes B)) &= \sigma(\varepsilon \cdot \pi_{\varphi}(A \otimes 1)\pi_{\varphi}(1 \otimes B)) \\ &= \sigma(\pi_{\varphi}(A \otimes 1)\pi_{\varphi}(1 \otimes B)) \\ &= \varphi((A \otimes 1)(1 \otimes B)) \\ &= \varphi(A \otimes B) \\ &= \psi(\pi(A)B) \\ &= \varphi((1 \otimes \pi(A))(1 \otimes B)), \end{split}$$

for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Therefore

$$e(A \otimes 1) = 1 \otimes \pi(A)$$
 for every $A \in \mathcal{A}$,

because φ is faithful on $1 \otimes \mathcal{B}$, which completes the proof.

Corollary 5. Let \mathcal{A} be a von Neumann algebra, \mathcal{B} a σ -finite abelian von Neumann algebra and π a generalized channel of \mathcal{A} to \mathcal{B} . Then there exists an expectation e of $\mathcal{A} \otimes \mathcal{B}$ onto $1 \otimes \mathcal{B}$ with

 $e(A \otimes 1) = 1 \otimes \pi(A)$

for all $A \in \mathcal{A}$.

By this corollary, a generalized channel of a von Neumann algebra to a σ -finite abelian von Neumann algebra is considered an expectation. Furthermore, the proof of Theorem 4 tells us that the generalized channel is considered a normal expectation.

References

- [1] W. B. Arveson: Subalgebras of C*-algebras. Acta Math., 123, 141-224 (1969).
- [2] M. Choda: A remark on the normal expectations. Proc. Japan Acad., 44, 462-466 (1968).
- [3] M. Choda (Echigo) and M. Nakamura: A remark on the concept of channels. Proc. Japan Acad., 38, 307-309 (1962).
- [4] J. Dixmier: Les algèbres d'opérateurs dans l'espace Hilbertien. Gauthier-Villars, Paris (1957).
- [5] M. Nakamura and T. Turumaru: Expectations in an operator algebra. Tohoku Math. J., 6, 182-188 (1954).

- [6] W. F. Stinespring: Positive functions on C*-algebras. Proc. Amer. Math. Soc., 6, 211-216 (1955).
- [7] H. Umegaki: Positive definite functions and direct product of Hilbert space. Tohoku Math. J., 7, 206-211 (1955).
- [8] ——: Conditional expectation in an operator algebra. III. Kōdai Math. Sem. Rep., 11, 51-64 (1959).