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51. On Some Hyperbolic Equations with Operator Coefficients

By Robert CARROLL
University of Illinois*)

(Comm. by KSsaku Y0SlDA, M. . A., April 12, 1973)

1. We consider first the class of singular Cauchy problems for
u e C(E) on [0, T].
(1.1) u+(2m+l) coth t u?+m(m+l)u=Au
(1.2) u(0) u0 u(0) 0
where u0 e E is given and A is the generator of a locally equicontinu-
ous group T(t)= exp At in a complete locally convex Hausdorff space E
(cf. [9]). When A is replaced by the Laplace-Beltrami operator /in
function spaces E over M=SL(2, R)/S0(2) and m>0 is an integer, these
equations arise in a canonical way from certain Lie group theoretic
considerations and are parallel to the corresponding Euler-Poisson-
Darboux (EPD) equations (cf. [2], [4], [10]); in fact there are many
parallel theories for canonical classes of singular Cauchy problems but
we will only deal here with (1.1)-(1.2) (cf. [5], [10] for other situations).

Now there are two canonical recursion relations arising from the
group theory when A is replaced by z/which we write in the form
(1.3) u+2m coth t u=2m csch t u-sinh t [A_m(m+l)]u+(1.4) u

2(m+ 1)
and (1.3) leads directly to a generalized Sonine formula (sh=sinh and
ch=cosh)

(1.5) sh t u(t) c(m, 1).[o (ch t--ch y)- sh-+ y u-(y)dy

where c(m, 1)--2F(m-t-1)/T’(m--l/l)F(1) and (temporarily)
are integers. Thus, for example, when m--l>/1 is an integer one con-
nects u to the mean value solution u and (1.4)-(1.5)yield a growth
theorem u0 for m0 whenevr [A--m(m-l)]uoO (since Au(t, Uo)--
u(t, AUo)). This and similar convexity theorems (see [2]; [4]; [10]) are
parallel to those of Weinstein [11] for EPD equations with m>/0 arbi-
trary (cf. also [1], [7], [12]). The Weinstein recursion relations for the
EPD theory correspond to a version of (1.4) plus a relation connecting
u to u (see remarks after (3.1)) a parallel form of a version of (1.3)
was also known. The (1.3)-(1.4) analogues were however first system-
atically exploited together in existence-uniqueness theory for EPD
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equations in [1] and their group theoretic significance was discovered in
[2], [4], [10]. The Sonine formulas are also Riemann-Liouville integrals
and are connected with the transmutation operators of Delsarte-Lions.

We give here some new types of growth and convexity theorems
for (1.1)-(1.2) when E is a suitable space of functions and m>--1/2
is arbitrary (see [3], [5] for details); theorems of the type mentioned
above can also be extended to arbitrary m> 0 but we will omit this (cf.
[5]). We develop existence and uniqueness theorems for general para-
meter values with general E and extend the recursion relations. Also
some general existence-uniqueness theorems for differential equations
with constant operator coefficients are indicated in section 4. The
constructions are based on a technique of Hersh [8] for Banach spaces
and we remark that the context of more general locally convex E and
locally equicontinuous groups is literally forced upon us by the growth
phenomena involved.

2. Let l(l+l)=-s (s e R) with l=--1/2+iv where v=(s--l/4)
and set z--ch t so that l<z c. Then define for m not a negative
integer

(2.1) /(t, s) 2F(m+ 1) .P(z)
(z_1)/

where P(z) denotes the associated Legendre function of the first kind.
The negative integers seem to be exceptional as in EPD theory. One
thinks of i(t,s)=R’2(t) where denotes the Fourier transform
(x-s) and using the relation (P is the Legendre unction defined for
any e C)
(2.2) P(z) (z-1)-/(J(J-P))(z)
with m-k= 1/2 and Re m> 1/2 (J denotes the Riemann-Liouville
fractional integration from 1 to z) we have

(x) for mTheorem 2.1 Let R( ) e C t Re 1/2 be defined by

( 1 ):(ch t--ch y)-/R;n(y)dy(2.3) sh t R’2(t) c m, m+

where R2,/()=()+(1/4) K(y,w)(w)dw i the niqe

in C () of the telegraph equation (2.6)with m --1/2 satisfying (2.7)
(with lx(y)--1/2[(x+y)+(x--y)] and K(y, w)=Jl(ia)/ia O where
a-- (y2-- w2)I/2 /2). Then R(t)=1(t, s) and setting

=/x
(2.4)

(2.5)
(2.6)
(2.7)

We

sh t [z/-m(m+ 1)]R/(t)DR’2(t)
2(m+ 1)

DR’2(t) +2m coth t R’2(t) 2m csch t
DR’2(t) + (2m+ 1) coth t DR’2(t) +m(m+ 1)Ry(t) zlR’2(t)

R’2(O) (x) DR’2(O) 0
define then for Rein>--1/2 (or m=--1/2) u(t)
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=(R($), T(x)Uo where it is assumed that u0eD(A2). This can be
written out in the form (cf. (2.3))

t u(t)--oI(t, y)(R;l/(y), T(x)uody(2.8) sh2

where I(t, y) c(m, m + 1/2)(ch t ch y)m-1/2 and, setting ch At
--2-1[T(t)+T(--t)],
(2.9) (R;1/(y), T(x)Uo-- ch Ay Uo+ --y

Theorem 2.2. Let A generate a locally equicontinuous group in a
complete locally convex Hausdorff space E. Assume Uo e D(A2) and
define u(t) for Rem 1/2 (or m-- 1/2) by (2.8)-(2.9). Then
ue C2(E) satisfies (1.1)-(1.2) and the recursion relations (1.3)-(1.4)
hold.

__A2_We write now A-- m(m+ 1) and combine (1 4) with (2 8)-(2 9)
for a growth theorem; for convexity we write (1.1) in the form
(d/df)u()=sh+ Au(t) where df/d=csch+ (cf. [1]-[5], [7],
[10]-[12]). There results

Theorem 2.3. Le u with m> l/2 real be constructed as in
Theorem 2.2 where E is a space of functions. Then if chAt(Auo)>/O
for 0< t4 to it follows that u is monotone nondecreasing on [0, to] and
aconvex function of f.

Remark 2.4. Various nontrivial concrete examples of E and A
are given in [3], [5] where realizable conditions on u0 will imply
ch At(Auo)>0. It is here that one is led to work in "large" spaces
and use locally equicontinuous groups.

3. We will indicate now two types of uniqueness theorems in the
context of Theorem 2.2 and along the way some existence theorems for
(1.1) with other indices will be established (see again [3], [5] for details).

Theorem 3.1. Let A generate a locally equicontinuous group in
E where E’ is complete and D(A*)E’ is dense. Then the solutions to
(1.1)-(1.2) constructed in Theorem 2.2 with Rem--l/2 or m----l/2
are unique if m is not an integer.

The proof of Theorem 3.1 uses the following result
Theorem 3.2. Underthe hypotheses of Theorem3.1 let Uo* eD((A*)2)

be arbitrary and 0<<T. Let n=--m--1 for Rem>--l/2 or m
1/2 with m not an integer. Then there exists a solution Y(t) of

(2.6) with index n satisfying Y()=0 and DY()=$(x) (D=3/3t). If
T*(t) is the locally equicontinuous group generated by A* then p=(t)
=<Y(t), T*(x)Uo*> satisfies (1.1) with index n and A replaced by A*
while p=($) 0 and pt=(t) uo*.

Thus, given u a solution of (1.1)-(1.2) with u0=0, one brackets
(1.1) with p, where p= is obtained from Theorem 3.2, and integrating
by parts we obtain <u(), u0*>=0 from which follows u(t)=_O on [0, T]
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since is arbitrary with D((A*)) dense (note here that --(2m+l)-2n
+ 1 with m(m+ 1) n(n+ 1)). In order to obtain Y(t) as in Theorem
3.2 we first embed the R(t) of Theorem 2.1 in an extended family
by means of the Weinstein type formula

(3.1) R(t)= (z--l)-(/z) [(z--l)/R’/(t)]
2(m+p)... (m+ 1)

where z=ch t, p is an integer chosen so that Re(re+p)>--1/2 (or m
+p=- 1/2), and m is not a negative integer; the recursion relations
(2.4)-(2.5) remain valid in the extended family. In deriving (3.1) one
uses the fact that sh- t R;(t) satisfies (2.6) with index n provided
R;(t) satisfies (2.6) with index --m. Now since P(z) and P?(z) are
linearly independent solutions of the associated Legendre equation for
m not an integer a second solution o (2.6)= (2.6) (A--*--s) is given
by (t, s) 2"F(m+ 1)(z 1)-/ (cf. (2.1)). Using (2.2) again
one defines

(3.2) W(t)-- b.[: (ch t--ch y)-/ shy W;/(y)dy

(cf. (2.3)) where b=2--nF(-m)/F(1/2)F(m/l/2), n=--m--1 with
Re m>--1/2 (m not an integer), and with /(w) as before, W;/(t)

(-(1/2)t)l:Jo((1/2)i(t--w)/)Z(w)dw so that W;/(0)=0 and=exp

DW;/(O)=(x). Finally or Ren--l/2 or n=--1/2 with n not an
integer Y(t) can be constructed as a suitable linear combination of
R(t) and W(t). The limitation that m not be an integer in Theorem
3.1 can probably be removed but we have not yet investigated this
carefully (see [5]).

In order to have a uniqueness theorem without the limitation that
E’ be complete with D(A*) dense we will indicate a procedure (see [3])
based on properties of the Riemann-Liouville integral (a similar method
or the EPD equation in a Banach space is suggested by Donaldson in
[6]). This method involves additional smoothness hypotheses on the
solution however (as in [6]) but it seems that a suitable distribution
argument using the same ormalism will eliminate the need for extra
regularity. We will sketch the ormMism here in the smooth case
treated in [3] and leave the refinements or [5]. Thus let u(t)=w(z)
(z=ch t) for Rem--l/2 satisfy (1.1)-(1.2) with u0=0 and set

(3.3) F(z) (z-- 1)w(z)
F(m+l)2

We consider the unction F-/ defined by F-/=J--/F. Given that
F will satisfy a certain differential equation P(z, Dz, A)F =0 (since
u satisfies (1.1)) it ollows that, under suitable regularity of F,
P_/(z, D, A)F-/=O and the u-/ arising rom F-/ via (3.3) will then
satisfy the generalized telegraph equation (1.1) with m= 1/2 where
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u-/(O)=u;/(O)--O. Hence if such u-/(t) are necessarily zero and if
m+1/2 is not an integer, so that one recovers F by the ormula F
=J//F-/, it follows that u(t)=_O. These results can be achieved
2or example if F e C/(E), F(1)=Fy(1)=0, and Au[/ e C(E) where
b 1/2< Re m b + 1/2 with b > 0 an integer or n b 1/2 (Rem 1/2
is excluded).

4. Some general existence-uniqueness theorems are also proved
in [5] for general hyperbolic differential equations with operator coeffi-
cients in E of the orm
(4.1) P(D,A)u-- P(A)Du-- c,ADu--O

j=0 j=0 i=0

where E is a complete locally convex Hausdorff space in which A
generates a locally equicontinuous group T(t), D--O/3t, 0<<T<c,
the c, are constant, and (for convenience) P(A)--1 (i.e., c,0= 1 with
c,=0 for i>0). A solution to (4.1) satisfying u(O)--u for
--1 with suitable u is constructed (following Hersh [8]) in the orm

m--1

(4.2) u(t)-- (g(t, .), T(. )u}
where P(D,--D) is hyperbolic in the sense of Gelfand-ilov and
(4.3) P(D, --D)g--0 Dg It=0--,(x)
where , is the Kronecker symbol (0< l<m-- 1). The technique is
essentially just an extension o that given in [8] and it was mainly
developed here in this general context in order to provide a ramework
in which to study growth theorems for various equations using oper-
ational calculus (also more specific hypotheses on the initial data are
given). The material on growth theorems is still in preparation and
most oi it will appear in [5]; the results already indicated in section 2
will appear in [3] and various other cases of time dependent coefficients
will also be treated in [5].
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